Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mitochondrion ; 73: 84-94, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37956777

RESUMO

The sleeping chironomid (Polypedilum vanderplanki) is the only insect capable of surviving complete desiccation in an ametabolic state called anhydrobiosis. Here, we focused on the role of oxidative stress and we observed the production of reactive oxygen species (ROS) in desiccating larvae and in those exposed to salinity stress. Oxidative stress occurs to some extent in desiccating larvae, inducing carbonylation of proteins. Oxidative stress overcomes the antioxidant defenses of the larvae during the first hour following rehydration of anhydrobiotic larvae. It facilitates the oxidation of DNA and cell membrane lipids; however, these damages are quickly repaired after a few hours. In addition to its deleterious effects, we demonstrated that artificial exposure to oxidative stress could induce a response similar to desiccation stress, at the transcriptome and protein levels. Furthermore, the response of anhydrobiosis-related genes to desiccation and salinity stress was inhibited by antioxidant treatment. Thus, we conclude that oxidative stress is an essential trigger for inducing the expression of protective genes during the onset of anhydrobiosis in desiccating of P. vanderplanki larvae.


Assuntos
Chironomidae , Animais , Chironomidae/genética , Chironomidae/metabolismo , Dessecação , Antioxidantes/metabolismo , Estresse Oxidativo , Larva/genética , Larva/metabolismo
2.
Cytotechnology ; 75(6): 491-503, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37841960

RESUMO

Pv11 was derived from embryos of the sleeping chironomid Polypedilum vanderplanki, which displays an extreme form of desiccation tolerance known as anhydrobiosis. Pre-treatment with a high concentration of trehalose allows Pv11 cells to enter anhydrobiosis. In the dry state, Pv11 cells preserve transgenic luciferase while retaining its activity. Thus, these cells could be utilized for dry-preserving antibodies, enzymes, signaling proteins or other valuable biological materials without denaturation. However, Pv11 cells grow in suspension, which limits their applicability; for instance, they cannot be integrated into microfluidic devices or used in devices such as sensor chips. Therefore, in this paper, we developed an effective immobilization system for Pv11 cells that, crucially, allows them to maintain their anhydrobiotic potential even when immobilized. Pv11 cells exhibited a very high adhesion rate with both biocompatible anchor for membrane (BAM) and Cell-Tak coatings, which have been reported to be effective on other cultured cells. We also found that Pv11 cells immobilized well to uncoated glass if handled in serum-free medium. Interestingly, Pv11 cells showed desiccation tolerance when trehalose treatment was done prior to immobilization of the cells. In contrast, trehalose treatment after immobilization of Pv11 cells resulted in a significant decrease in desiccation tolerance. Thus, it is important to induce anhydrobiosis before immobilization. In summary, we report the successful development of a protocol for the dry preservation of immobilized Pv11 cells. Supplementary Information: The online version contains supplementary material available at 10.1007/s10616-023-00592-0.

3.
Genome Biol Evol ; 15(10)2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37708413

RESUMO

The sleeping chironomid Polypedilum vanderplanki is capable of anhydrobiosis, a striking example of adaptation to extreme desiccation. Tolerance to complete desiccation in this species is associated with emergence of multiple paralogs of protective genes. One of the gene families highly expressed under anhydrobiosis and involved in this process is protein-L-isoaspartate (D-aspartate) O-methyltransferases (PIMTs). Recently, another closely related midge was discovered, Polypedilum pembai, which is able not only to tolerate desiccation but also to survive multiple desiccation-rehydration cycles. To investigate the evolution of anhydrobiosis in these species, we sequenced and assembled the genome of P. pembai and compared it with P. vanderplanki and also performed a population genomics analysis of several populations of P. vanderplanki and one population of P. pembai. We observe positive selection and radical changes in the genetic architecture of the PIMT locus between the two species, including its amplification in the P. pembai lineage. In particular, PIMT-4, the most highly expressed of these PIMTs, is present in six copies in the P. pembai; these copies differ in expression profiles, suggesting possible sub- or neofunctionalization. The nucleotide diversity of the genomic region carrying these new genes is decreased in P. pembai, but not in the orthologous region carrying the ancestral gene in P. vanderplanki, providing evidence for a selective sweep associated with postduplication adaptation in the former. Overall, our results suggest an extensive relatively recent and likely ongoing adaptation of the mechanisms of anhydrobiosis.

4.
Sci Rep ; 13(1): 8735, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37253792

RESUMO

The Japanese rhinoceros beetle Trypoxylus dichotomus is a giant beetle with distinctive exaggerated horns present on the head and prothoracic regions of the male. T. dichotomus has been used as a research model in various fields such as evolutionary developmental biology, ecology, ethology, biomimetics, and drug discovery. In this study, de novo assembly of 615 Mb, representing 80% of the genome estimated by flow cytometry, was obtained using the 10 × Chromium platform. The scaffold N50 length of the genome assembly was 8.02 Mb, with repetitive elements predicted to comprise 49.5% of the assembly. In total, 23,987 protein-coding genes were predicted in the genome. In addition, de novo assembly of the mitochondrial genome yielded a contig of 20,217 bp. We also analyzed the transcriptome by generating 16 RNA-seq libraries from a variety of tissues of both sexes and developmental stages, which allowed us to identify 13 co-expressed gene modules. We focused on the genes related to horn formation and obtained new insights into the evolution of the gene repertoire and sexual dimorphism as exemplified by the sex-specific splicing pattern of the doublesex gene. This genomic information will be an excellent resource for further functional and evolutionary analyses, including the evolutionary origin and genetic regulation of beetle horns and the molecular mechanisms underlying sexual dimorphism.


Assuntos
Besouros , Animais , Feminino , Masculino , Besouros/genética , Fenótipo , Caracteres Sexuais
5.
Zootaxa ; 5128(3): 397-410, 2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-36101166

RESUMO

One newly described species of Chironomidae, Polypedilum (Pentapedilum) cranstoni sp. nov., was discovered in ephemeral rock pools from the Maloti-Drakensberg mountains in South Africa. Desiccation-resistant larvae were obtained from bottom sediments of rock pools that had been dry for the previous several months. After rehydration, ex situ adults emerged and were collected. The morphology and diagnostic characters of the new species (male and female adults) are described here together with an analysis based on their COI gene sequence.


Assuntos
Chironomidae , Distribuição Animal , Animais , Chironomidae/anatomia & histologia , Chironomidae/genética , Dessecação , Feminino , Larva/anatomia & histologia , Larva/genética , Masculino , África do Sul
6.
Insects ; 13(7)2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35886811

RESUMO

Tardigrades are small micrometazoans able to resist several environmental stresses in any stage of their life cycle. An integrated analysis of tardigrade specimens collected in Tsukuba (Japan) revealed a peculiar morphology and a new sensory field in the cloaca. Molecular taxonomy and phylogenetic analysis on different genes (COI, ITS2, 18S and 28S) confirmed that this population is a new species, Macrobiotus kyoukenus sp. nov., belonging to the widespread Macrobiotus hufelandi group. The stress resistance capabilities of M. kyoukenus sp. nov. have been tested by submitting animals to extreme desiccation, rapid freezing, and high levels of ultraviolet radiations (UVB and UVC). Animals were able to survive desiccation (survivorship 95.71 ± 7.07%) and freezing up to -80 °C (82.33 ± 17.11%). Both hydrated and desiccated animals showed a high tolerance to increasing UV radiations: hydrated animals survived to doses up to 152.22 kJ m-2 (UVB) and up to 15.00 kJ m-2 (UVC), while desiccated specimens persisted to radiations up to 165.12 kJ m-2 (UVB) and up to 35.00 kJ m-2 (UVC). Present data contribute to the discovery of a larger tardigrade biodiversity in Japan, and the tolerance capabilities of M. kyoukenus sp. nov. show that it could become a new emerging model for stress resistance studies.

7.
Biology (Basel) ; 11(4)2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35453687

RESUMO

Anhydrobiosis, an adaptive ability to withstand complete desiccation, in the nonbiting midge Polypedilum vanderplanki, is associated with the emergence of new multimember gene families, including a group of 27 genes of late embryogenesis abundant (LEA) proteins (PvLea). To obtain new insights into the possible functional specialization of these genes, we investigated the expression and localization of PvLea genes in a P. vanderplanki-derived cell line (Pv11), capable of anhydrobiosis. We confirmed that all but two PvLea genes identified in the genome of P. vanderplanki are expressed in Pv11 cells. Moreover, PvLea genes are induced in Pv11 cells in response to anhydrobiosis-inducing trehalose treatment in a manner highly similar to the larvae of P. vanderplanki during the real induction of anhydrobiosis. Then, we expanded our previous data on PvLEA proteins localization in mammalian cells that were obtained using C-terminal fusions of PvLEA proteins and green fluorescent protein (GFP). We investigated PvLEA localization using N- and C-terminal fusions with GFP in Pv11 cells and the Sf9 insect cell line. We observed an inconsistency of PvLEA localization between different fusion types and different cell cultures, that needs to be taken into account when using PvLEA in the engineering of anhydrobiotic cell lines.

8.
NAR Genom Bioinform ; 4(2): lqac029, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35387384

RESUMO

Non-biting midges (Chironomidae) are known to inhabit a wide range of environments, and certain species can tolerate extreme conditions, where the rest of insects cannot survive. In particular, the sleeping chironomid Polypedilum vanderplanki is known for the remarkable ability of its larvae to withstand almost complete desiccation by entering a state called anhydrobiosis. Chromosome numbers in chironomids are higher than in other dipterans and this extra genomic resource might facilitate rapid adaptation to novel environments. We used improved sequencing strategies to assemble a chromosome-level genome sequence for P. vanderplanki for deep comparative analysis of genomic location of genes associated with desiccation tolerance. Using whole genome-based cross-species and intra-species analysis, we provide evidence for the unique functional specialization of Chromosome 4 through extensive acquisition of novel genes. In contrast to other insect genomes, in the sleeping chironomid a uniquely high degree of subfunctionalization in paralogous anhydrobiosis genes occurs in this chromosome, as well as pseudogenization in a highly duplicated gene family. Our findings suggest that the Chromosome 4 in Polypedilum is a site of high genetic turnover, allowing it to act as a 'sandbox' for evolutionary experiments, thus facilitating the rapid adaptation of midges to harsh environments.

9.
Genes (Basel) ; 13(3)2022 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-35327960

RESUMO

Genomic safe harbors (GSHs) provide ideal integration sites for generating transgenic organisms and cells and can be of great benefit in advancing the basic and applied biology of a particular species. Here we report the identification of GSHs in a dry-preservable insect cell line, Pv11, which derives from the sleeping chironomid, Polypedilum vanderplanki, and similar to the larvae of its progenitor species exhibits extreme desiccation tolerance. To identify GSHs, we carried out genome analysis of transgenic cell lines established by random integration of exogenous genes and found four candidate loci. Targeted knock-in was performed into these sites and the phenotypes of the resulting transgenic cell lines were examined. Precise integration was achieved for three candidate GSHs, and in all three cases integration did not alter the anhydrobiotic ability or the proliferation rate of the cell lines. We therefore suggest these genomic loci represent GSHs in Pv11 cells. Indeed, we successfully constructed a knock-in system and introduced an expression unit into one of these GSHs. We therefore identified several GSHs in Pv11 cells and developed a new technique for producing transgenic Pv11 cells without affecting the phenotype.


Assuntos
Chironomidae , Animais , Linhagem Celular , Chironomidae/genética , Genômica , Insetos , Larva
10.
Sci Rep ; 11(1): 19698, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34611198

RESUMO

Pv11 is an insect cell line established from the midge Polypedilum vanderplanki, whose larval form exhibits an extreme desiccation tolerance known as anhydrobiosis. Pv11 itself is also capable of anhydrobiosis, which is induced by trehalose treatment. Here we report the successful construction of a genome editing system for Pv11 cells and its application to the identification of signaling pathways involved in anhydrobiosis. Using the Cas9-mediated gene knock-in system, we established Pv11 cells that stably expressed GCaMP3 to monitor intracellular Ca2+ mobilization. Intriguingly, trehalose treatment evoked a transient increase in cytosolic Ca2+ concentration, and further experiments revealed that the calmodulin-calcineurin-NFAT pathway contributes to tolerance of trehalose treatment as well as desiccation tolerance, while the calmodulin-calmodulin kinase-CREB pathway conferred only desiccation tolerance on Pv11 cells. Thus, our results show a critical contribution of the trehalose-induced Ca2+ surge to anhydrobiosis and demonstrate temporally different roles for each signaling pathway.


Assuntos
Sistemas CRISPR-Cas , Sinalização do Cálcio , Desidratação , Edição de Genes , Animais , Cálcio/metabolismo , Linhagem Celular , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Técnicas de Introdução de Genes , Ontologia Genética , Insetos , Larva , RNA Guia de Cinetoplastídeos , Estresse Fisiológico , Trealose/metabolismo , Trealose/farmacologia
11.
Int J Mol Sci ; 22(11)2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34071490

RESUMO

The Pv11, an insect cell line established from the midge Polypedilum vanderplanki, is capable of extreme hypometabolic desiccation tolerance, so-called anhydrobiosis. We previously discovered that heat shock factor 1 (HSF1) contributes to the acquisition of desiccation tolerance by Pv11 cells, but the mechanistic details have yet to be elucidated. Here, by analyzing the gene expression profiles of newly established HSF1-knockout and -rescue cell lines, we show that HSF1 has a genome-wide effect on gene regulation in Pv11. The HSF1-knockout cells exhibit a reduced desiccation survival rate, but this is completely restored in HSF1-rescue cells. By comparing mRNA profiles of the two cell lines, we reveal that HSF1 induces anhydrobiosis-related genes, especially genes encoding late embryogenesis abundant proteins and thioredoxins, but represses a group of genes involved in basal cellular processes, thus promoting an extreme hypometabolism state in the cell. In addition, HSF1 binding motifs are enriched in the promoters of anhydrobiosis-related genes and we demonstrate binding of HSF1 to these promoters by ChIP-qPCR. Thus, HSF1 directly regulates the transcription of anhydrobiosis-related genes and consequently plays a pivotal role in the induction of anhydrobiotic ability in Pv11 cells.


Assuntos
Adaptação Fisiológica/genética , Chironomidae/genética , Dessecação , Regulação da Expressão Gênica , Estudo de Associação Genômica Ampla/métodos , Fatores de Transcrição de Choque Térmico/genética , Proteínas de Insetos/genética , Animais , Linhagem Celular , Chironomidae/citologia , Análise por Conglomerados , Perfilação da Expressão Gênica/métodos
12.
Insects ; 11(11)2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33187095

RESUMO

The Pv11 cell line established from an African chironomid, Polypedilum vanderplanki, is the only cell line tolerant to complete desiccation. In Pv11 cells, a constitutive expression system for Pv11 cells was previously exploited and several reporter genes were successfully expressed. Here we report the identification of an effective minimal promoter for Pv11 cells and its application to the Tet-On inducible expression system. First, using a luciferase reporter assay, we showed that a 202 bp deletion fragment derived from the constitutively active 121-promoter functions in Pv11 cells as an appropriate minimal promoter with the Tet-On inducible expression system. The AcGFP1 (Aequorea coerulescens green fluorescent protein) was also successfully expressed in Pv11 cells using the inducible system. In addition to these reporter genes, the avian myeloblastosis virus reverse transcriptase α subunit (AMV RTα), which is one of the most widely commercially available RNA-dependent DNA polymerases, was successfully expressed through the inducible expression system and its catalytic activity was verified. These results demonstrate the establishment of an inducible expression system in cells that can be preserved in the dry state and highlight a possible application to the production of large and complex proteins.

13.
Proc Natl Acad Sci U S A ; 117(32): 19209-19220, 2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32723826

RESUMO

Some organisms have evolved a survival strategy to withstand severe dehydration in an ametabolic state, called anhydrobiosis. The only known example of anhydrobiosis among insects is observed in larvae of the chironomid Polypedilum vanderplanki Recent studies have led to a better understanding of the molecular mechanisms underlying anhydrobiosis and the action of specific protective proteins. However, gene regulation alone cannot explain the rapid biochemical reactions and independent metabolic changes that are expected to sustain anhydrobiosis. For this reason, we conducted a comprehensive comparative metabolome-transcriptome analysis in the larvae. We showed that anhydrobiotic larvae adopt a unique metabolic strategy to cope with complete desiccation and, in particular, to allow recovery after rehydration. We argue that trehalose, previously known for its anhydroprotective properties, plays additional vital roles, providing both the principal source of energy and also the restoration of antioxidant potential via the pentose phosphate pathway during the early stages of rehydration. Thus, larval viability might be directly dependent on the total amount of carbohydrate (glycogen and trehalose). Furthermore, in the anhydrobiotic state, energy is stored as accumulated citrate and adenosine monophosphate, allowing rapid reactivation of the citric acid cycle and mitochondrial activity immediately after rehydration, before glycolysis is fully functional. Other specific adaptations to desiccation include potential antioxidants (e.g., ophthalmic acid) and measures to avoid the accumulation of toxic waste metabolites by converting these to stable and inert counterparts (e.g., xanthurenic acid and allantoin). Finally, we confirmed that these metabolic adaptations correlate with unique organization and expression of the corresponding enzyme genes.


Assuntos
Dípteros/metabolismo , Proteínas de Insetos/metabolismo , Monofosfato de Adenosina/metabolismo , Animais , Dessecação , Dípteros/química , Dípteros/genética , Secas , Glicogênio/genética , Glicogênio/metabolismo , Proteínas de Insetos/química , Proteínas de Insetos/genética , Larva/química , Larva/genética , Larva/metabolismo , Metaboloma , Transcriptoma , Trealose/metabolismo , Água/metabolismo
14.
Sci Rep ; 10(1): 11633, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32669703

RESUMO

Larvae of the sleeping chironomid Polypedilum vanderplanki are known for their extraordinary ability to survive complete desiccation in an ametabolic state called "anhydrobiosis". The unique feature of P. vanderplanki genome is the presence of expanded gene clusters associated with anhydrobiosis. While several such clusters represent orthologues of known genes, there is a distinct set of genes unique for P. vanderplanki. These include Lea-Island-Located (LIL) genes with no known orthologues except two of LEA genes of P. vanderplanki, PvLea1 and PvLea3. However, PvLIL proteins lack typical features of LEA such as the state of intrinsic disorder, hydrophilicity and characteristic LEA_4 motif. They possess four to five transmembrane domains each and we confirmed membrane targeting for three PvLILs. Conserved amino acids in PvLIL are located in transmembrane domains or nearby. PvLEA1 and PvLEA3 proteins are chimeras combining LEA-like parts and transmembrane domains, shared with PvLIL proteins. We have found that PvLil genes are highly upregulated during anhydrobiosis induction both in larvae of P. vanderplanki and P. vanderplanki-derived cultured cell line, Pv11. Thus, PvLil are a new intriguing group of genes that are likely to be associated with anhydrobiosis due to their common origin with some LEA genes and their induction during anhydrobiosis.


Assuntos
Membrana Celular/metabolismo , Chironomidae/fisiologia , Desidratação , Proteínas de Insetos/metabolismo , Proteínas de Membrana/metabolismo , Motivos de Aminoácidos , Animais , Linhagem Celular , Clonagem Molecular , Análise por Conglomerados , Simulação por Computador , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Larva/fisiologia , Família Multigênica , Filogenia , Domínios Proteicos , RNA-Seq
15.
PLoS One ; 15(3): e0230218, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32191739

RESUMO

Water is essential for living organisms. Terrestrial organisms are incessantly exposed to the stress of losing water, desiccation stress. Avoiding the mortality caused by desiccation stress, many organisms acquired molecular mechanisms to tolerate desiccation. Larvae of the African midge, Polypedilum vanderplanki, and its embryonic cell line Pv11 tolerate desiccation stress by entering an ametabolic state, anhydrobiosis, and return to active life after rehydration. The genes related to desiccation tolerance have been comprehensively analyzed, but transcriptional regulatory mechanisms to induce these genes after desiccation or rehydration remain unclear. Here, we comprehensively analyzed the gene regulatory network in Pv11 cells and compared it with that of Drosophila melanogaster, a desiccation sensitive species. We demonstrated that nuclear transcription factor Y subunit gamma-like, which is important for drought stress tolerance in plants, and its transcriptional regulation of downstream positive feedback loops have a pivotal role in regulating various anhydrobiosis-related genes. This study provides an initial insight into the systemic mechanism of desiccation tolerance.


Assuntos
Proteínas de Insetos/genética , Fatores de Transcrição/genética , Animais , Fenômenos Biológicos/genética , Linhagem Celular , Chironomidae/genética , Desidratação/genética , Dessecação/métodos , Drosophila melanogaster/genética , Regulação da Expressão Gênica/genética , Larva/genética , Estresse Fisiológico/genética
16.
Sci Rep ; 9(1): 7004, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-31065019

RESUMO

Larvae of the African midge Polypedilum vanderplanki (Diptera: Chironomidae) show a form of extreme desiccation tolerance known as anhydrobiosis. The cell line Pv11 was recently established from the species, and these cells can also survive under desiccated conditions, and proliferate normally after rehydration. Here we report the identification of a new promoter, 121, which has strong constitutive transcriptional activity in Pv11 cells and promotes effective expression of exogenous genes. Using a luciferase reporter assay, this strong transcriptional activity was shown to be conserved in cell lines from various insect species, including S2 (Drosophila melanogaster, Diptera), SaPe-4 (Sarcophaga peregrina, Diptera), Sf9 (Spodoptera frugiperda, Lepidoptera) and Tc81 (Tribolium castaneum, Coleoptera) cells. In conjunction with an appropriate selection maker gene, the 121 promoter was able to confer zeocin resistance on SaPe-4 cells and allowed the establishment of stable SaPe-4 cell lines expressing the fluorescent protein AcGFP1; this is the first report of heterologous gene expression in this cell line. These results show the 121 promoter to be a versatile tool for exogenous gene expression in a wide range of insect cell lines, particularly useful to those from non-model insect species.


Assuntos
Chironomidae/genética , Expressão Gênica , Regiões Promotoras Genéticas , Adaptação Fisiológica , Animais , Linhagem Celular , Chironomidae/fisiologia , Proteínas de Insetos/genética , Células Sf9
17.
Sci Rep ; 8(1): 17941, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30560869

RESUMO

The larvae of the African midge, Polypedilum vanderplanki, can enter an ametabolic state called anhydrobiosis to overcome fatal desiccation stress. The Pv11 cell line, derived from P. vanderplanki embryo, shows desiccation tolerance when treated with trehalose before desiccation and resumes proliferation after rehydration. However, the molecular mechanisms of this desiccation tolerance remain unknown. Here, we performed high-throughput CAGE-seq of mRNA and a differentially expressed gene analysis in trehalose-treated, desiccated, and rehydrated Pv11 cells, followed by gene ontology analysis of the identified differentially expressed genes. We detected differentially expressed genes after trehalose treatment involved in various stress responses, detoxification of harmful chemicals, and regulation of oxidoreduction that were upregulated. In the desiccation phase, L-isoaspartyl methyltransferase and heat shock proteins were upregulated and ribosomal proteins were downregulated. Analysis of differentially expressed genes during rehydration supported the notion that homologous recombination, nucleotide excision repair, and non-homologous recombination were involved in the recovery process. This study provides initial insights into the molecular mechanisms underlying the extreme desiccation tolerance of Pv11 cells.


Assuntos
Adaptação Biológica/genética , Perfilação da Expressão Gênica , Estresse Fisiológico/genética , Transcriptoma , Animais , Linhagem Celular , Biologia Computacional/métodos , Reparo do DNA , Desidratação , Dessecação , Ontologia Genética , Insetos/fisiologia , Larva , Trealose/metabolismo
18.
Adv Exp Med Biol ; 1081: 259-270, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30288714

RESUMO

One of the major damaging factors for living organisms experiencing water insufficiency is oxidative stress. Loss of water causes a dramatic increase in the production of reactive oxygen species (ROS). Thus, the ability for some organisms to survive almost complete desiccation (called anhydrobiosis) is tightly related to the ability to overcome extraordinary oxidative stress. The most complex anhydrobiotic organism known is the larva of the chironomid Polypedilum vanderplanki. Its antioxidant system shows remarkable features, such as an expansion of antioxidant genes, their overexpression, as well as the absence or low expression of enzymes required for the synthesis of ascorbate and glutathione and their antioxidant function. In this chapter, we summarize existing data about the antioxidant system of this insect, which is able to cope with substantial oxidative damage, even in an intracellular environment that is severely disturbed due to water loss.


Assuntos
Aclimatação , Antioxidantes/metabolismo , Chironomidae/metabolismo , Estresse Oxidativo , Água/metabolismo , Animais , Chironomidae/embriologia , Chironomidae/genética , Desidratação , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Larva/metabolismo , Estado de Hidratação do Organismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
19.
Proc Natl Acad Sci U S A ; 115(10): E2477-E2486, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29463761

RESUMO

Polypedilum vanderplanki is a striking and unique example of an insect that can survive almost complete desiccation. Its genome and a set of dehydration-rehydration transcriptomes, together with the genome of Polypedilum nubifer (a congeneric desiccation-sensitive midge), were recently released. Here, using published and newly generated datasets reflecting detailed transcriptome changes during anhydrobiosis, as well as a developmental series, we show that the TCTAGAA DNA motif, which closely resembles the binding motif of the Drosophila melanogaster heat shock transcription activator (Hsf), is significantly enriched in the promoter regions of desiccation-induced genes in P. vanderplanki, such as genes encoding late embryogenesis abundant (LEA) proteins, thioredoxins, or trehalose metabolism-related genes, but not in P. nubifer Unlike P. nubifer, P. vanderplanki has double TCTAGAA sites upstream of the Hsf gene itself, which is probably responsible for the stronger activation of Hsf in P. vanderplanki during desiccation compared with P. nubifer To confirm the role of Hsf in desiccation-induced gene activation, we used the Pv11 cell line, derived from P. vanderplanki embryo. After preincubation with trehalose, Pv11 cells can enter anhydrobiosis and survive desiccation. We showed that Hsf knockdown suppresses trehalose-induced activation of multiple predicted Hsf targets (including P. vanderplanki-specific LEA protein genes) and reduces the desiccation survival rate of Pv11 cells fivefold. Thus, cooption of the heat shock regulatory system has been an important evolutionary mechanism for adaptation to desiccation in P. vanderplanki.


Assuntos
Chironomidae/fisiologia , Fatores de Transcrição de Choque Térmico/metabolismo , Proteínas de Insetos/metabolismo , Animais , Evolução Biológica , Chironomidae/genética , Desidratação , Feminino , Fatores de Transcrição de Choque Térmico/genética , Resposta ao Choque Térmico , Proteínas de Insetos/genética , Masculino , Estresse Fisiológico
20.
Sci Rep ; 7(1): 6540, 2017 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-28747745

RESUMO

Desiccation-tolerant cultured cells Pv11 derived from the anhydrobiotic midge embryo endure complete desiccation in an ametabolic state and resume their metabolism after rehydration. These features led us to develop a novel dry preservation technology for enzymes as it was still unclear whether Pv11 cells could preserve an exogenous enzyme in the dry state. This study shows that Pv11 cells protect an exogenous desiccation-sensitive enzyme, luciferase (Luc), preserving the enzymatic activity even after dry storage for 372 days at room temperature. A process including preincubation with trehalose, dehydration, storage, and rehydration allowed Pv11 (Pv11-Luc) cells stably expressing luciferase to survive desiccation and still emit luminescence caused by luciferase after rehydration. Luminescence produced by luciferase in Pv11-Luc cells after rehydration did not significantly decrease in presence of a translation inhibitor, showing that the activity did not derive from de novo enzyme synthesis following the resumption of cell metabolism. These findings indicate that the surviving Pv11 cells almost completely protect luciferase during desiccation. Lacking of the preincubation step resulted in the loss of luciferase activity after rehydration. We showed that preincubation with trehalose associated to induction of desiccation tolerance-related genes in Pv11 cells allowed effective in vivo preservation of enzymes in the dry state.


Assuntos
Desidratação , Luciferases/metabolismo , Substâncias Luminescentes/metabolismo , Preservação Biológica/métodos , Temperatura , Animais , Linhagem Celular , Chironomidae
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA