Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Fish Biol ; 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38922867

RESUMO

Polar cod (Boreogadus saida) is an endemic key species of the Arctic Ocean ecosystem. The ecology of this forage fish is well studied in Arctic shelf habitats where a large part of its population lives. However, knowledge about its ecology in the central Arctic Ocean (CAO), including its use of the sea-ice habitat, is hitherto very limited. To increase this knowledge, samples were collected at the under-ice surface during several expeditions to the CAO between 2012 and 2020, including the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition. The diet of immature B. saida and the taxonomic composition of their potential prey were analysed, showing that both sympagic and pelagic species were important prey items. Stomach contents included expected prey such as copepods and amphipods. Surprisingly, more rarely observed prey such as appendicularians, chaetognaths, and euphausiids were also found to be important. Comparisons of the fish stomach contents with prey distribution data suggests opportunistic feeding. However, relative prey density and catchability are important factors that determine which type of prey is ingested. Prey that ensures limited energy expenditure on hunting and feeding is often found in the stomach contents even though it is not the dominant species present in the environment. To investigate the importance of prey quality and quantity for the growth of B. saida in this area, we measured energy content of dominant prey species and used a bioenergetic model to quantify the effect of variations in diet on growth rate potential. The modeling results suggest that diet variability was largely explained by stomach fullness and, to a lesser degree, the energetic content of the prey. Our results suggest that under climate change, immature B. saida may be at least equally sensitive to a loss in the number of efficiently hunted prey than to a reduction in the prey's energy content. Consequences for the growth and survival of B. saida will not depend on prey presence alone, but also on prey catchability, digestibility, and energy content.

2.
Nat Commun ; 14(1): 564, 2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36732509

RESUMO

Zooplankton are major consumers of phytoplankton primary production in marine ecosystems. As such, they represent a critical link for energy and matter transfer between phytoplankton and bacterioplankton to higher trophic levels and play an important role in global biogeochemical cycles. In this Review, we discuss key responses of zooplankton to ocean warming, including shifts in phenology, range, and body size, and assess the implications to the biological carbon pump and interactions with higher trophic levels. Our synthesis highlights key knowledge gaps and geographic gaps in monitoring coverage that need to be urgently addressed. We also discuss an integrated sampling approach that combines traditional and novel techniques to improve zooplankton observation for the benefit of monitoring zooplankton populations and modelling future scenarios under global changes.


Assuntos
Ecossistema , Zooplâncton , Animais , Zooplâncton/fisiologia , Cadeia Alimentar , Clima , Fitoplâncton/fisiologia , Mudança Climática
3.
PeerJ ; 10: e12823, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35127292

RESUMO

Comau Fjord is a stratified Chilean Patagonian Fjord characterized by a shallow brackish surface layer and a >400 m layer of aragonite-depleted subsurface waters. Despite the energetic burden of low aragonite saturation levels to calcification, Comau Fjord harbours dense populations of cold-water corals (CWC). While this paradox has been attributed to a rich supply of zooplankton, supporting abundance and biomass data are so far lacking. In this study, we investigated the seasonal and diel changes of the zooplankton community over the entire water column. We used a Nansen net (100 µm mesh) to take stratified vertical hauls between the surface and the bottom (0-50-100-200-300-400-450 m). Samples were scanned with a ZooScan, and abundance, biovolume and biomass were determined for 41 taxa identified on the web-based platform EcoTaxa 2.0. Zooplankton biomass was the highest in summer (209 g dry mass m-2) and the lowest in winter (61 g dry mass m-2). Abundance, however, peaked in spring, suggesting a close correspondence between reproduction and phytoplankton spring blooms (Chl a max. 50.86 mg m-3, 3 m depth). Overall, copepods were the most important group of the total zooplankton community, both in abundance (64-81%) and biovolume (20-70%) followed by mysids and chaetognaths (in terms of biovolume and biomass), and nauplii and Appendicularia (in terms of abundance). Throughout the year, diel changes in the vertical distribution of biomass were found with a daytime maximum in the 100-200 m depth layer and a nighttime maximum in surface waters (0-50 m), associated with the diel vertical migration of the calanoid copepod family Metridinidae. Diel differences in integrated zooplankton abundance, biovolume and biomass were probably due to a high zooplankton patchiness driven by biological processes (e.g., diel vertical migration or predation avoidance), and oceanographic processes (estuarine circulation, tidal mixing or water column stratification). Those factors are considered to be the main drivers of the zooplankton vertical distribution in Comau Fjord.


Assuntos
Copépodes , Estuários , Animais , Biomassa , Zooplâncton , Chile , Estações do Ano , Água , Carbonato de Cálcio
4.
PeerJ ; 9: e12609, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34966598

RESUMO

In the North Patagonian fjord region, the cold-water coral (CWC) Desmophyllum dianthus occurs in high densities, in spite of low pH and aragonite saturation. If and how these conditions affect the energy demand of the corals is so far unknown. In a laboratory experiment, we investigated the carbon and nitrogen (C, N) budget of D. dianthus from Comau Fjord under three feeding scenarios: (1) live fjord zooplankton (100-2,300 µm), (2) live fjord zooplankton plus krill (>7 mm), and (3) four-day food deprivation. In closed incubations, C and N budgets were derived from the difference between C and N uptake during feeding and subsequent C and N loss through respiration, ammonium excretion, release of particulate organic carbon and nitrogen (POC, PON). Additional feeding with krill significantly increased coral respiration (35%), excretion (131%), and POC release (67%) compared to feeding on zooplankton only. Nevertheless, the higher C and N losses were overcompensated by the threefold higher C and N uptake, indicating a high assimilation and growth efficiency for the krill plus zooplankton diet. In contrast, short food deprivation caused a substantial reduction in respiration (59%), excretion (54%), release of POC (73%) and PON (87%) compared to feeding on zooplankton, suggesting a high potential to acclimatize to food scarcity (e.g., in winter). Notwithstanding, unfed corals 'lost' 2% of their tissue-C and 1.2% of their tissue-N per day in terms of metabolism and released particulate organic matter (likely mucus). To balance the C (N) losses, each D. dianthus polyp has to consume around 700 (400) zooplankters per day. The capture of a single, large krill individual, however, provides enough C and N to compensate daily C and N losses and grow tissue reserves, suggesting that krill plays an important nutritional role for the fjord corals. Efficient krill and zooplankton capture, as well as dietary and metabolic flexibility, may enable D. dianthus to thrive under adverse environmental conditions in its fjord habitat; however, it is not known how combined anthropogenic warming, acidification and eutrophication jeopardize the energy balance of this important habitat-building species.

5.
Philos Trans R Soc Lond B Biol Sci ; 375(1814): 20190446, 2020 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-33131432

RESUMO

An accurate identification of species and communities is a prerequisite for analysing and recording biodiversity and community shifts. In the context of marine biodiversity conservation and management, this review outlines past, present and forward-looking perspectives on identifying and recording planktonic diversity by illustrating the transition from traditional species identification based on morphological diagnostic characters to full molecular genetic identification of marine assemblages. In this process, the article presents the methodological advancements by discussing progress and critical aspects of the crossover from traditional to novel and future molecular genetic identifications and it outlines the advantages of integrative approaches using the strengths of both morphological and molecular techniques to identify species and assemblages. We demonstrate this process of identifying and recording marine biodiversity on pelagic copepods as model taxon. Copepods are known for their high taxonomic and ecological diversity and comprise a huge variety of behaviours, forms and life histories, making them a highly interesting and well-studied group in terms of biodiversity and ecosystem functioning. Furthermore, their short life cycles and rapid responses to changing environments make them good indicators and core research components for ecosystem health and status in the light of environmental change. This article is part of the theme issue 'Integrative research perspectives on marine conservation'.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Copépodes , Animais , Copépodes/anatomia & histologia , Copépodes/genética , Microscopia
6.
PeerJ ; 6: e4685, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29780666

RESUMO

Among copepods, which are the most abundant animals on Earth, the genus Oithona is described as one of the most numerous and plays a major role in the marine food chain and biogeochemical cycles, particularly through the excretion of chitin-coated fecal pellets. Despite the morphology of several Oithona species is well known, knowledge of its internal anatomy and chitin distribution is still limited. To answer this problem, Oithona nana and O. similis individuals were stained by Wheat Germ Agglutinin-Fluorescein IsoThioCyanate (WGA-FITC) and DiAmidino-2-PhenylIndole (DAPI) for fluorescence microscopy observations. The image analyses allowed a new description of the organization and chitin content of the digestive and reproductive systems of Oithona male and female. Chitin microfibrils were found all along the digestive system from the stomach to the hindgut with a higher concentration at the peritrophic membrane of the anterior midgut. Several midgut shrinkages were observed and proposed to be involved in faecal pellet shaping and motion. Amorphous chitin structures were also found to be a major component of the ducts and seminal vesicles and receptacles. The rapid staining protocol we proposed allowed a new insight into the Oithona internal anatomy and highlighted the role of chitin in the digestion and reproduction. This method could be applied to a wide range of copepods in order to perform comparative anatomy analyses.

7.
Mol Ecol ; 26(17): 4467-4482, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28636804

RESUMO

In the epipelagic ocean, the genus Oithona is considered as one of the most abundant and widespread copepods and plays an important role in the trophic food web. Despite its ecological importance, little is known about Oithona and cyclopoid copepods genomics. Therefore, we sequenced, assembled and annotated the genome of Oithona nana. The comparative genomic analysis integrating available copepod genomes highlighted the expansions of genes related to stress response, cell differentiation and development, including genes coding Lin12-Notch-repeat (LNR) domain proteins. The Oithona biogeography based on 28S sequences and metagenomic reads from the Tara Oceans expedition showed the presence of O. nana mostly in the Mediterranean Sea (MS) and confirmed the amphitropical distribution of Oithona similis. The population genomics analyses of O. nana in the Northern MS, integrating the Tara Oceans metagenomic data and the O. nana genome, led to the identification of genetic structure between populations from the MS basins. Furthermore, 20 loci were found to be under positive selection including four missense and eight synonymous variants, harbouring soft or hard selective sweep patterns. One of the missense variants was localized in the LNR domain of the coding region of a male-specific gene. The variation in the B-allele frequency with respect to the MS circulation pattern showed the presence of genomic clines between O. nana and another undefined Oithona species possibly imported through Atlantic waters. This study provides new approaches and results in zooplankton population genomics through the integration of metagenomic and oceanographic data.


Assuntos
Copépodes/genética , Genética Populacional , Seleção Genética , Animais , Frequência do Gene , Masculino , Mar Mediterrâneo , Zooplâncton
8.
PLoS One ; 12(5): e0175663, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28467414

RESUMO

CO2 seeps in coral reefs were used as natural laboratories to study the impacts of ocean acidification on the pontellid copepod, Labidocera spp. Pontellid abundances were reduced by ∼70% under high-CO2 conditions. Biological parameters and substratum preferences of the copepods were explored to determine the underlying causes of such reduced abundances. Stage- and sex-specific copepod lengths, feeding ability, and egg development were unaffected by ocean acidification, thus changes in these physiological parameters were not the driving factor for reduced abundances under high-CO2 exposure. Labidocera spp. are demersal copepods, hence they live amongst reef substrata during the day and emerge into the water column at night. Deployments of emergence traps showed that their preferred reef substrata at control sites were coral rubble, macro algae, and turf algae. However, under high-CO2 conditions they no longer had an association with any specific substrata. Results from this study indicate that even though the biology of a copepod might be unaffected by high-CO2, Labidocera spp. are highly vulnerable to ocean acidification.


Assuntos
Dióxido de Carbono/química , Copépodes/fisiologia , Concentração de Íons de Hidrogênio , Ácidos , Animais , Feminino , Masculino , Oceanos e Mares
9.
Mol Phylogenet Evol ; 107: 473-485, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28007567

RESUMO

Traditionally, many small-sized copepod species are considered to be widespread, bipolar or cosmopolitan. However, these large-scale distribution patterns need to be re-examined in view of increasing evidence of cryptic and pseudo-cryptic speciation in pelagic copepods. Here, we present a phylogeographic study of Oithona similis s.l. populations from the Arctic Ocean, the Southern Ocean and its northern boundaries, the North Atlantic and the Mediterrranean Sea. O. similis s.l. is considered as one of the most abundant species in temperate to polar oceans and acts as an important link in the trophic network between the microbial loop and higher trophic levels such as fish larvae. Two gene fragments were analysed: the mitochondrial cytochrome oxidase c subunit I (COI), and the nuclear ribosomal 28 S genetic marker. Seven distinct, geographically delimitated, mitochondrial lineages could be identified, with divergences among the lineages ranging from 8 to 24%, thus representing most likely cryptic or pseudocryptic species within O. similis s.l. Four lineages were identified within or close to the borders of the Southern Ocean, one lineage in the Arctic Ocean and two lineages in the temperate Northern hemisphere. Surprisingly the Arctic lineage was more closely related to lineages from the Southern hemisphere than to the other lineages from the Northern hemisphere, suggesting that geographic proximity is a rather poor predictor of how closely related the clades are on a genetic level.


Assuntos
Copépodes/classificação , Internacionalidade , Filogenia , Filogeografia , Plâncton/classificação , Animais , Teorema de Bayes , Complexo IV da Cadeia de Transporte de Elétrons/genética , Variação Genética , Haplótipos/genética , Mitocôndrias/genética , Especificidade da Espécie , Fatores de Tempo
10.
PLoS Genet ; 12(12): e1006325, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27906968

RESUMO

The majority of cilia are formed and maintained by the highly conserved process of intraflagellar transport (IFT). Mutations in IFT genes lead to ciliary structural defects and systemic disorders termed ciliopathies. Here we show that the severely truncated sensory cilia of hypomorphic IFT mutants in C. elegans transiently elongate during a discrete period of adult aging leading to markedly improved sensory behaviors. Age-dependent restoration of cilia morphology occurs in structurally diverse cilia types and requires IFT. We demonstrate that while DAF-16/FOXO is dispensable, the age-dependent suppression of cilia phenotypes in IFT mutants requires cell-autonomous functions of the HSF1 heat shock factor and the Hsp90 chaperone. Our results describe an unexpected role of early aging and protein quality control mechanisms in suppressing ciliary phenotypes of IFT mutants, and suggest possible strategies for targeting subsets of ciliopathies.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Cílios/genética , Fatores de Transcrição Forkhead/genética , Proteínas de Choque Térmico HSP90/genética , Fatores de Transcrição/genética , Envelhecimento/genética , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Proteínas de Caenorhabditis elegans/biossíntese , Cílios/metabolismo , Ciliopatias/genética , Ciliopatias/terapia , Fatores de Transcrição Forkhead/biossíntese , Proteínas de Choque Térmico HSP90/biossíntese , Humanos , Microtúbulos/genética , Microtúbulos/metabolismo , Chaperonas Moleculares/genética , Mutação , Células Receptoras Sensoriais/metabolismo , Fatores de Transcrição/biossíntese
11.
PLoS Curr ; 62014 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-24987576

RESUMO

More than 2,500 species of copepods (Class Maxillopoda; Subclass Copepoda) occur in the marine planktonic environment. The exceptional morphological conservation of the group, with numerous sibling species groups, makes the identification of species challenging, even for expert taxonomists. Molecular approaches to species identification have allowed rapid detection, discrimination, and identification of species based on DNA sequencing of single specimens and environmental samples. Despite the recent development of diverse genetic and genomic markers, the barcode region of the mitochondrial cytochrome c oxidase subunit I (COI) gene remains a useful and - in some cases - unequaled diagnostic character for species-level identification of copepods. This study reports 800 new barcode sequences for 63 copepod species not included in any previous study and examines the reliability and resolution of diverse statistical approaches to species identification based upon a dataset of 1,381 barcode sequences for 195 copepod species. We explore the impact of missing data (i.e., species not represented in the barcode database) on the accuracy and reliability of species identifications. Among the tested approaches, the best close match analysis resulted in accurate identification of all individuals to species, with no errors (false positives), and out-performed automated tree-based or BLAST based analyses. This comparative analysis yields new understanding of the strengths and weaknesses of DNA barcoding and confirms the value of DNA barcodes for species identification of copepods, including both individual specimens and bulk samples. Continued integrative morphological-molecular taxonomic analysis is needed to produce a taxonomically-comprehensive database of barcode sequences for all species of marine copepods.

12.
Front Zool ; 11(1): 19, 2014 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-24581044

RESUMO

INTRODUCTION: Many marine planktonic crustaceans such as copepods have been considered as widespread organisms. However, the growing evidence for cryptic and pseudo-cryptic speciation has emphasized the need of re-evaluating the status of copepod species complexes in molecular and morphological studies to get a clearer picture about pelagic marine species as evolutionary units and their distributions. This study analyses the molecular diversity of the ecologically important Paracalanus parvus species complex. Its seven currently recognized species are abundant and also often dominant in marine coastal regions worldwide from temperate to tropical oceans. RESULTS: COI and Cytochrome b sequences of 160 specimens of the Paracalanus parvus complex from all oceans were obtained. Furthermore, 42 COI sequences from GenBank were added for the genetic analyses. Thirteen distinct molecular operational taxonomic units (MOTU) and two single sequences were revealed with cladistic analyses (Maximum Likelihood, Bayesian Inference), of which seven were identical with results from species delimitation methods (barcode gaps, ABDG, GMYC, Rosenberg's P(AB)). In total, 10 to 12 putative species were detected and could be placed in three categories: (1) temperate geographically isolated, (2) warm-temperate to tropical wider spread and (3) circumglobal warm-water species. CONCLUSIONS: The present study provides evidence of cryptic or pseudocryptic speciation in the Paracalanus parvus complex. One major insight is that the species Paracalanus parvus s.s. is not panmictic, but may be restricted in its distribution to the northeastern Atlantic.

13.
PLoS Genet ; 10(3): e1004225, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24675767

RESUMO

Insulin-like peptides (ILPs) play highly conserved roles in development and physiology. Most animal genomes encode multiple ILPs. Here we identify mechanisms for how the forty Caenorhabditis elegans ILPs coordinate diverse processes, including development, reproduction, longevity and several specific stress responses. Our systematic studies identify an ILP-based combinatorial code for these phenotypes characterized by substantial functional specificity and diversity rather than global redundancy. Notably, we show that ILPs regulate each other transcriptionally, uncovering an ILP-to-ILP regulatory network that underlies the combinatorial phenotypic coding by the ILP family. Extensive analyses of genetic interactions among ILPs reveal how their signals are integrated. A combined analysis of these functional and regulatory ILP interactions identifies local genetic circuits that act in parallel and interact by crosstalk, feedback and compensation. This organization provides emergent mechanisms for phenotypic specificity and graded regulation for the combinatorial phenotypic coding we observe. Our findings also provide insights into how large hormonal networks regulate diverse traits.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Insulina/genética , Receptor de Insulina/genética , Animais , Caenorhabditis elegans/crescimento & desenvolvimento , Redes Reguladoras de Genes , Insulina/metabolismo , Longevidade/genética , Fenótipo , Receptor de Insulina/metabolismo , Transdução de Sinais/genética , Somatomedinas/genética , Somatomedinas/metabolismo
14.
Mol Phylogenet Evol ; 69(3): 861-72, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23831457

RESUMO

The Paracalanidae are ecologically-important marine planktonic copepods that occur in the epipelagic zone in temperate and tropical waters. They are often the dominant taxon - in terms of biomass and abundance - in continental shelf regions. As primary consumers, they form a vital link in the pelagic food web between primary producers and higher trophic levels. Despite the ecological importance of the taxon, evolutionary and systematic relationships within the family remain largely unknown. A multigene phylogeny including 24 species, including representatives for all seven genera, was determined based on two nuclear genes, small-subunit (18S) ribosomal RNA and Histone 3 (H3) and one mitochondrial gene, cytochrome c oxidase subunit I (COI). The molecular phylogeny was well supported by Maximum likelihood and Bayesian inference analysis; all genera were found to be monophyletic, except for Paracalanus, which was separated into two distinct clades: the Paracalanus aculeatus group and Paracalanus parvus group. The molecular phylogeny also confirmed previous findings that Mecynocera and Calocalanus are genera of the family Paracalanidae. For comparison, a morphological phylogeny was created for 35 paracalanid species based on 54 morphological characters derived from published descriptions. The morphological phylogeny did not resolve all genera as monophyletic and bootstrap support was not strong. Molecular and morphological phylogenies were not congruent in the positioning of Bestiolina and the Paracalanus species groups, possibly due to the lack of sufficient phylogenetically-informative morphological characters.


Assuntos
Copépodes/classificação , Filogenia , Animais , Teorema de Bayes , Evolução Biológica , Núcleo Celular/genética , Copépodes/anatomia & histologia , Copépodes/genética , Feminino , Genes Mitocondriais , Histonas/genética , Funções Verossimilhança , RNA Ribossômico 18S/genética , Análise de Sequência de DNA
15.
Neuron ; 77(3): 572-85, 2013 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-23395381

RESUMO

The insulin/insulin-like peptides (ILPs) regulate key events in physiology, including neural plasticity. However, the cellular and circuit mechanisms whereby ILPs regulate learning remain largely unknown. Here, we characterize two ILPs that play antagonistic roles in aversive olfactory learning of C. elegans. We show that the ILP ins-6 acts from ASI sensory neurons to enable learning by repressing the transcription of another ILP, ins-7, specifically in URX neurons. A high level of INS-7 from URX disrupts learning by antagonizing the insulin receptor-like homolog DAF-2 in the postsynaptic neurons RIA, which play an essential role in the neural circuit underlying olfactory learning. We also show that increasing URX-generated INS-7 and loss of INS-6, both of which abolish learning, alter RIA neuronal property. Together, our results reveal an "ILP-to-ILP" pathway that links environment-sensing neurons, ASI and URX, to the key neuron, RIA, of a network that underlies olfactory plasticity and modulates its activity.


Assuntos
Aprendizagem da Esquiva/fisiologia , Insulina/química , Condutos Olfatórios/fisiologia , Hormônios Peptídicos/fisiologia , Transdução de Sinais/fisiologia , Olfato/efeitos dos fármacos , Aminoácidos , Análise de Variância , Animais , Animais Geneticamente Modificados , Aprendizagem da Esquiva/efeitos dos fármacos , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Cálcio/metabolismo , Quimiotaxia/efeitos dos fármacos , Quimiotaxia/fisiologia , Comportamento de Escolha/fisiologia , Relação Dose-Resposta a Droga , Embrião não Mamífero , Genótipo , Proteínas de Fluorescência Verde/genética , Estimativa de Kaplan-Meier , Mutação/genética , Odorantes , Condutos Olfatórios/citologia , Hormônios Peptídicos/classificação , Hormônios Peptídicos/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/fisiologia , Transdução de Sinais/efeitos dos fármacos
16.
PLoS One ; 6(1): e16561, 2011 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-21304598

RESUMO

Thioredoxins comprise a conserved family of redox regulators involved in many biological processes, including stress resistance and aging. We report that the C. elegans thioredoxin TRX-1 acts in ASJ head sensory neurons as a novel modulator of the insulin-like neuropeptide DAF-28 during dauer formation. We show that increased formation of stress-resistant, long-lived dauer larvae in mutants for the gene encoding the insulin-like neuropeptide DAF-28 requires TRX-1 acting in ASJ neurons, upstream of the insulin-like receptor DAF-2. Genetic rescue experiments demonstrate that redox-independent functions of TRX-1 specifically in ASJ neurons are needed for the dauer formation constitutive (Daf-c) phenotype of daf-28 mutants. GFP reporters of trx-1 and daf-28 show opposing expression patterns in dauers (i.e. trx-1 is up-regulated and daf-28 is down-regulated), an effect that is not observed in growing L2/L3 larvae. In addition, functional TRX-1 is required for the down-regulation of a GFP reporter of daf-28 during dauer formation, a process that is likely subject to DAF-28-mediated feedback regulation. Our findings demonstrate that TRX-1 modulates DAF-28 signaling by contributing to the down-regulation of daf-28 expression during dauer formation. We propose that TRX-1 acts as a fluctuating neuronal signaling modulator within ASJ neurons to monitor the adjustment of neuropeptide expression, including insulin-like proteins, during dauer formation in response to adverse environmental conditions.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Receptor de Insulina/metabolismo , Tiorredoxinas/metabolismo , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Proteínas de Caenorhabditis elegans/genética , Meio Ambiente , Regulação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Insulinas , Larva/genética , Larva/metabolismo , Mutação , Neurônios/fisiologia , Neuropeptídeos/fisiologia , Receptor de Insulina/genética , Tiorredoxinas/genética
17.
Development ; 138(6): 1183-93, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21343369

RESUMO

An insulin-like signaling pathway mediates the environmental influence on the switch between the C. elegans developmental programs of reproductive growth versus dauer arrest. However, the specific role of endogenous insulin-like peptide (ILP) ligands in mediating the switch between these programs remains unknown. C. elegans has 40 putative insulin-like genes, many of which are expressed in sensory neurons and interneurons, raising the intriguing possibility that ILPs encode different environmental information to regulate the entry into, and exit from, dauer arrest. These two developmental switches can have different regulatory requirements: here we show that the relative importance of three different ILPs varies between dauer entry and exit. Not only do we find that one ILP, ins-1, ensures dauer arrest under harsh environments and that two other ILPs, daf-28 and ins-6, ensure reproductive growth under good conditions, we also show that daf-28 and ins-6 have non-redundant functions in regulating these developmental switches. Notably, daf-28 plays a more primary role in inhibiting dauer entry, whereas ins-6 has a more significant role in promoting dauer exit. Moreover, the switch into dauer arrest surprisingly shifts ins-6 transcriptional expression from a set of dauer-inhibiting sensory neurons to a different set of neurons, where it promotes dauer exit. Together, our data suggest that specific ILPs generate precise responses to dauer-inducing cues, such as pheromones and low food levels, to control development through stimulus-regulated expression in different neurons.


Assuntos
Caenorhabditis elegans/embriologia , Caenorhabditis elegans/crescimento & desenvolvimento , Somatomedinas/fisiologia , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/fisiologia , Embrião não Mamífero , Regulação da Expressão Gênica no Desenvolvimento , Insulina/química , Insulina/genética , Insulina/metabolismo , Insulina/fisiologia , Insulinas , Longevidade/genética , Longevidade/fisiologia , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/fisiologia , Hormônios Peptídicos/química , Hormônios Peptídicos/genética , Hormônios Peptídicos/metabolismo , Hormônios Peptídicos/fisiologia , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Receptor de Insulina/fisiologia , Transdução de Sinais , Somatomedinas/genética , Somatomedinas/metabolismo , Sobrevida/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA