Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 33(38): 9997-10005, 2017 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-28885026

RESUMO

Lichenysins produced by Bacillus licheniformis are anionic lipopeptide biosurfactants with cytotoxic, antimicrobial, and hemolytic activities that possess enormous potential for chemical and biological applications. Through the use of physical techniques such as differential scanning calorimetry, small- and wide-angle X-ray diffraction, and Fourier-transform infrared spectroscopy as well as molecular dynamics simulations, we report on the interaction of Lichenysin with synthetic phosphatidylcholines differing in hydrocarbon chain length. Lichenysin alters the thermotropic phase behavior of phosphatidylcholines, displaying fluid-phase immiscibility and showing a preferential partitioning into fluid domains. The interlamellar repeat distance of dipalmitoylphosphatidylcholine (DPPC) is modified, affecting both the phospholipid palisade and the lipid/water interface, which also experiences a strong dehydration. Molecular dynamics confirms that Lichenysin is capable of interacting both with the hydrophobic portion of DPPC and with the polar headgroup region, which is of particular relevance to explain much of its properties. The results presented here help to establish a molecular basis for the Lichenysin-induced perturbation of model and biological membranes previously described in the literature.


Assuntos
Lipopeptídeos/química , 1,2-Dipalmitoilfosfatidilcolina , Varredura Diferencial de Calorimetria , Membrana Celular , Lecitinas , Bicamadas Lipídicas , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
2.
Langmuir ; 32(1): 78-87, 2016 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-26652062

RESUMO

The various lichenysins produced by Bacillus licheniformis are anionic surfactants with interesting properties. Here it is shown that lichenysin caused hemolysis of human erythrocytes, which varied with lichenysin concentration in a sigmoidal manner. The release of K(+) from red blood cells induced by lichenysin preceded the leakage of hemoglobin, and in addition, hemolysis could be impeded by the presence of compounds in the external medium having a size larger than that of PEG 3350, indicating a colloid-osmotic mechanism for hemolysis. Lichenysin also caused permeabilization of model phospholipid membranes, which was a slow process with an initial lag period of 10-20 s observed for all lichenysin concentrations. A high cholesterol ratio in the membrane decreased the extent of leakage as compared to that of pure POPC, whereas at lower ratios the effect of cholesterol was the opposite, enhancing the extent of leakage. POPE was found to decrease the extent of leakage at all the concentrations assayed, and inclusion of DPPC resulted in a considerable increase in CF leakage extent. From this scenario it was concluded that lipid membrane composition plays a role in the target membrane selectivity of lichenysin. Molecular dynamics simulations indicated that lichenysin is well distributed along the bilayer, and Na(+) ions can penetrate inside the bilayer through the lichenysin molecules. The presence of lichenysin in the membrane increases the permeability of the membrane to hydrophilic molecules facilitating its flux across the lipid palisade. The results presented in this work contribute to understanding the molecular mechanisms that explain the biological actions of lichenysin related to biomembranes.


Assuntos
Lipoproteínas/química , Eritrócitos/efeitos dos fármacos , Hemólise/efeitos dos fármacos , Humanos , Cinética , Bicamadas Lipídicas/química , Simulação de Dinâmica Molecular , Permeabilidade , Fosfatidiletanolaminas/química , Tensoativos/efeitos adversos , Tensoativos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA