Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Dairy Sci ; 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38395394

RESUMO

The objective of this study was to evaluate the interaction of dietary carbohydrate profile and soybean meal (SBM) replacement with either Chlorella pyrenoidosa (CHL) or Spirulina platensis (SPI) on in vitro fermentation. This experiment was conducted as a randomized complete block design, with fermentation run (3 runs) considered as blocks. The treatments were arranged in a 2 × 5 factorial design, where the first factor was the carbohydrate profile, which was composed of diets containing 42.5% NDF and 26.8% starch (HF-LS) or 26.8% NDF and 40.6% starch (LF-HS) and the second factor was the protein source, in which a control diet (100% SBM), partial replacement of SBM with CHL (1/2 CHL) or SPI (1/2 SPI), or total replacement of SBM with CHL or SPI were used. All experimental diets were formulated to have 17% crude protein. The ruminal fluid was collected from 2 lactating Holstein cows, buffered with Van Soest medium at a ratio of 1:2 and added to serum bottles containing 0.50 g of the experimental diets. Bottles were incubated at 39°C for 24 and 48 h in triplicate; headspace pressure was measured, along with gas collection for methane (CH4) quantification at 0, 2, 4, 8, 16, 24, 36, and 48 h after incubation. The final medium was used to measure pH, ammonia, and volatile-fatty acid (VFA). After incubation, feed bags were recovered and used for estimation of degradability of DMD, NDF, and OMD. Statistical analysis was carried out using the MIXED procedure of SAS, with carbohydrate profile, protein source, assay, and its interactions as fixed effects, with run and bottle as random effects. Orthogonal contrasts were used to compare carbohydrate profile, algae species, carbohydrate profile × algae interaction, and linear and quadratic effects of SBM replacement with CHL or SPI. There was no interaction effect between carbohydrate profile and algae source. LF-HS improved gas production, degradability of nutrients, and VFA, mainly increasing the production of butyrate and propionate. When compared with CHL, SPI had a greater degradability of nutrients and branched VFA, along with reduction in total gas production and tended to reduce total CH4 yield. The replacement of SBM with algae linearly reduced the degradability of nutrients, along with a linear reduction in gas production. When replacement of SBM with only SPI was evaluated, SPI slightly reduced the degradability of nutrients; however, it promoted a linear reduction in CH4 yield, as well as reduction in CH4 yield by unit of degraded DM, NDF, and OM. In summary, there was no interaction of carbohydrate profile and protein source, which means that SBM replacement had a similar effect, regardless of dietary carbohydrate profile. Spirulina may be a more suitable algae source when compared with Chlorella due to the potential to reduce CH4.

2.
J Dairy Sci ; 107(3): 1460-1471, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37944802

RESUMO

The objective of this study was to evaluate the effects of partially replacing soybean meal (SBM) with algal sources on in vitro ruminal fermentation. Using 6 fermenters in a 3 × 3 replicated Latin square with 3 periods of 10 d each, we tested 3 treatments: a control diet (CRT) with SBM at 17.8% of the diet dry matter (DM); and 50% SBM biomass replacement with either Chlorella pyrenoidosa (CHL); or Spirulina platensis (SPI). The basal diet was formulated to meet the requirements of a 680-kg Holstein dairy cow producing 45 kg/d of milk with 3.5% fat and 3% protein. All diets had a similar nutritional composition (16.0% CP; 34.9% NDF; 31.0% starch, DM basis) and fermenters were provided with 106 g DM/d split into 2 portions. After 7 d of adaptation, samples were collected for 3 d of each period for analyses of ruminal fermentation at 0, 1, 2, 4, 6, and 8 h after morning feeding for evaluation of the ruminal fermentation kinetics. For the evaluation of the daily production of total metabolites and for the evaluation of nutrient degradability, samples from the effluent containers were collected daily. Statistical analysis was performed with the MIXED procedure of SAS with treatment, time, and their interactions considered as fixed effects; day, square, and fermenter were considered as random effects. Orthogonal contrasts (CRT vs. algae; and CHL vs. SPI) were used to depict the treatment effect, and significance was declared when P ≤ 0.05. Fermenters that received algae-based diets had a greater propionate molar concentration and molar proportion when compared with the fermenters fed CRT diets. In addition, those algae-fed fermenters had lower branched short-chain fatty acids (BSCFA) and isoacids (IA), which are biomarkers of ruminal protein degradation, along with lower ammonia (NH3-N) concentration and greater nonammonia nitrogen (NAN). When contrasting with fermenters fed SPI-diets, fermenters fed based CHL-diets had a lower molar concentration of BSCFA and IA, along with lower NH3-N concentration and flow, and greater NAN, bacterial nitrogen flow, and efficiency of nitrogen utilization. Those results indicate that CHL protein may be more resistant to ruminal degradation, which would increase efficiency of nitrogen utilization. In summary, partially replacing SBM with algae biomass, especially with CHL, is a promising strategy to improve the efficiency of nitrogen utilization, due to the fact that fermenters fed CHL-based diets resulted in a reduction in BSCFA and IA, which are markers of protein degradation, and it would improve the efficiency of nitrogen utilization. However, further validation using in vivo models are required.


Assuntos
Chlorella , Microalgas , Feminino , Bovinos , Animais , Fermentação , Lactação , Proteólise , Ração Animal/análise , Biomassa , Chlorella/metabolismo , Farinha/análise , Glycine max , Nutrientes/análise , Nitrogênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA