Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 10(2): 138-143, 2019 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-30561209

RESUMO

Coulomb explosion imaging is proposed as a method to directly map the presence of conical intersections encountered by a propagating wave packet in a molecular system. The case of choice is the nonadiabatic coupling between two dissociative surfaces in the methyl iodide molecule, probed by Coulomb explosion with short, intense near-infrared pulses causing multiple ionization. On-the-fly multidimensional trajectory calculations with surface hopping using perturbation theory and including spin-orbit coupling are performed to visualize the dynamics through the conical intersection and compare with experimental results. The possibilities and limitations of the technique are examined and discussed.

2.
J Phys Chem Lett ; 7(22): 4458-4463, 2016 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-27786494

RESUMO

This Letter presents an experimental and theoretical study of femtosecond time-resolved vector correlations in methyl iodide (CH3I) electronic predissociation via the second absorption B-band at 201.2 nm. The time evolution of the phenomenological anisotropy parameters ßl was determined from time-resolved photofragment angular distributions obtained by means of the femtosecond laser pump-probe technique coupled with velocity map imaging detection of vibrational ground-state CH3(ν = 0) fragments and spin-orbit excited I*(2P1/2) atoms. Theoretical interpretation of the experimental results was performed on the basis of a fitting procedure using quasiclassical theory, which elucidates vector correlations in photodissociation of symmetric top molecules. The results of the fitting are in very good agreement with the experimental data and demonstrate the important role of molecular excited-state lifetimes, parent molecule and methyl fragment rotations, and methyl fragment angular momentum alignment on the time-dependent electronic predissociation dynamics.

3.
Nat Chem ; 6(9): 785-90, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25143213

RESUMO

Experiments aimed at understanding ultrafast molecular processes are now routine, and the notion that external laser fields can constitute an additional reagent is also well established. The possibility of externally controlling a reaction with radiation increases immensely when its intensity is sufficiently high to distort the potential energy surfaces at which chemists conceptualize reactions take place. Here we explore the transition from the weak- to the strong-field regimes of laser control for the dissociation of a polyatomic molecule, methyl iodide. The control over the yield of the photodissociation reaction proceeds through the creation of a light-induced conical intersection. The control of the velocity of the product fragments requires external fields with both high intensities and short durations. This is because the mechanism by which control is exerted involves modulating the potentials around the light-induced conical intersection, that is, creating light-induced potentials.

4.
J Chem Phys ; 136(7): 074303, 2012 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-22360239

RESUMO

Femtosecond time-resolved velocity map imaging experiments are reported on several vibronic levels of the second absorption band (B-band) of CH(3)I, including vibrational excitation in the ν(2) and ν(3) modes of the bound (3)R(1)(E) Rydberg state. Specific predissociation lifetimes have been determined for the 2(0)(1) and 3(0)(1) vibronic levels from measurements of time-resolved I*((2)P(1/2)) and CH(3) fragment images, parent decay, and photoelectron images obtained through both resonant and non-resonant multiphoton ionization. The results are compared with our previously reported predissociation lifetime measurements for the band origin 0(0) (0) [Gitzinger et al., J. Chem. Phys. 132, 234313 (2010)]. The result, previously reported in the literature, where vibrational excitation to the C-I stretching mode (ν(3)) of the CH(3)I (3)R(1)(E) Rydberg state yields a predissociation lifetime about four times slower than that corresponding to the vibrationless state, whereas predissociation is twice faster if the vibrational excitation is to the umbrella mode (ν(2)), is confirmed in the present experiments. In addition to the specific vibrational state lifetimes, which were found to be 0.85 ± 0.04 ps and 4.34 ± 0.13 ps for the 2(0)(1) and 3(0)(1) vibronic levels, respectively, the time evolution of the fragment anisotropy and the vibrational activity of the CH(3) fragment are presented. Additional striking results found in the present work are the evidence of ground state I((2)P(3/2)) fragment production when excitation is produced specifically to the 3(0)(1) vibronic level, which is attributed to predissociation via the A-band (1)Q(1) potential energy surface, and the indication of a fast adiabatic photodissociation process through the repulsive A-band (3)A(1)(4E) state, after direct absorption to this state, competing with absorption to the 3(0)(1) vibronic level of the (3)R(1)(E) Rydberg state of the B-band.

5.
J Chem Phys ; 132(23): 234313, 2010 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-20572711

RESUMO

A femtosecond pump-probe experiment, coupled with velocity map ion imaging, is reported on the second absorption band (B-band) of CH(3)I. The measurements provide a detailed picture of real-time B-band predissociation in the band origin at 201.2 nm. Several new data are reported. (i) A value of 1.5+/-0.1 ps has been obtained for the lifetime of the excited state, consistent within errors with the only other direct measurement of this quantity [A. P. Baronavski and J. C. Owrutsky, J. Chem. Phys. 108, 3445 (1998)]. (ii) It has been possible to measure the angular character of the transition directly through the observation of fragments appearing early with respect to both predissociation lifetime and molecular rotation. (iii) Vibrational activity in CH(3) has been found, both in the umbrella (nu(2)) and the symmetric stretch (nu(1)) modes, with estimates of relative populations. All these findings constitute a challenge and a test for much-wanted high level ab initio and dynamics calculations in this energy region.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA