Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Proteome Res ; 15(2): 563-71, 2016 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-26696396

RESUMO

Recent studies have identified the important role of the gut microbiota in the pathogenesis and progression of obesity and related metabolic disorders. The antioxidant tempol was shown to prevent or reduce weight gain and modulate the gut microbiota community in mice; however, the mechanism by which tempol modulates weight gain/loss with respect to the host and gut microbiota has not been clearly established. Here we show that tempol (0, 1, 10, and 50 mg/kg p.o. for 5 days) decreased cecal bacterial fermentation and increased fecal energy excretion in a dose-dependent manner. Liver (1)H NMR-based metabolomics identified a dose-dependent decrease in glycogen and glucose, enhanced glucogenic and ketogenic activity (tyrosine and phenylalanine), and increased activation of the glycolysis pathway. Serum (1)H NMR-based metabolomics indicated that tempol promotes enhanced glucose catabolism. Hepatic gene expression was significantly altered as demonstrated by an increase in Pepck and G6pase and a decrease in Hnf4a, ChREBP, Fabp1, and Cd36 mRNAs. No significant change in the liver and serum metabolomic profiles was observed in germ-free mice, thus establishing a significant role for the gut microbiota in mediating the beneficial metabolic effects of tempol. These results demonstrate that tempol modulates the gut microbial community and its function, resulting in reduced host energy availability and a significant shift in liver metabolism toward a more catabolic state.


Assuntos
Óxidos N-Cíclicos/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Metaboloma/efeitos dos fármacos , Metabolômica/métodos , Animais , Antioxidantes/farmacologia , Relação Dose-Resposta a Droga , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/genética , Cromatografia Gasosa-Espectrometria de Massas , Microbioma Gastrointestinal/fisiologia , Trato Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/metabolismo , Trato Gastrointestinal/microbiologia , Expressão Gênica/efeitos dos fármacos , Interações Hospedeiro-Patógeno , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Metaboloma/genética , Camundongos Endogâmicos BALB C , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Marcadores de Spin
2.
Environ Sci Technol ; 49(13): 8067-77, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26023891

RESUMO

Environmental exposure to dioxins and dioxin-like compounds poses a significant health risk for human health. Developing a better understanding of the mechanisms of toxicity through activation of the aryl hydrocarbon receptor (AHR) is likely to improve the reliability of risk assessment. In this study, the AHR-dependent metabolic response of mice exposed to 2,3,7,8-tetrachlorodibenzofuran (TCDF) was assessed using global (1)H nuclear magnetic resonance (NMR)-based metabolomics and targeted metabolite profiling of extracts obtained from serum and liver. (1)H NMR analyses revealed that TCDF exposure suppressed gluconeogenesis and glycogenolysis, stimulated lipogenesis, and triggered inflammatory gene expression in an Ahr-dependent manner. Targeted analyses using gas chromatography coupled with mass spectrometry showed TCDF treatment altered the ratio of unsaturated/saturated fatty acids. Consistent with this observation, an increase in hepatic expression of stearoyl coenzyme A desaturase 1 was observed. In addition, TCDF exposure resulted in inhibition of de novo fatty acid biosynthesis manifested by down-regulation of acetyl-CoA, malonyl-CoA, and palmitoyl-CoA metabolites and related mRNA levels. In contrast, no significant changes in the levels of glucose and lipid were observed in serum and liver obtained from Ahr-null mice following TCDF treatment, thus strongly supporting the important role of the AHR in mediating the metabolic effects seen following TCDF exposure.


Assuntos
Benzofuranos/toxicidade , Fígado/efeitos dos fármacos , Metabolômica/métodos , Receptores de Hidrocarboneto Arílico/metabolismo , Animais , Dioxinas/toxicidade , Poluentes Ambientais/toxicidade , Ácidos Graxos/metabolismo , Expressão Gênica/efeitos dos fármacos , Glucose/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolismo dos Lipídeos/genética , Fígado/metabolismo , Espectroscopia de Ressonância Magnética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes
3.
Environ Health Perspect ; 123(7): 679-88, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25768209

RESUMO

BACKGROUND: Alteration of the gut microbiota through diet and environmental contaminants may disturb physiological homeostasis, leading to various diseases including obesity and type 2 diabetes. Because most exposure to environmentally persistent organic pollutants (POPs) occurs through the diet, the host gastrointestinal tract and commensal gut microbiota are likely to be exposed to POPs. OBJECTIVES: We examined the effect of 2,3,7,8-tetrachlorodibenzofuran (TCDF), a persistent environmental contaminant, on gut microbiota and host metabolism, and we examined correlations between gut microbiota composition and signaling pathways. METHODS: Six-week-old male wild-type and Ahr-/- mice on the C57BL/6J background were treated with 24 µg/kg TCDF in the diet for 5 days. We used 16S rRNA gene sequencing, 1H nuclear magnetic resonance (NMR) metabolomics, targeted ultra-performance liquid chromatography coupled with triplequadrupole mass spectrometry, and biochemical assays to determine the microbiota compositions and the physiological and metabolic effects of TCDF. RESULTS: Dietary TCDF altered the gut microbiota by shifting the ratio of Firmicutes to Bacteroidetes. TCDF-treated mouse cecal contents were enriched with Butyrivibrio spp. but depleted in Oscillobacter spp. compared with vehicle-treated mice. These changes in the gut microbiota were associated with altered bile acid metabolism. Further, dietary TCDF inhibited the farnesoid X receptor (FXR) signaling pathway, triggered significant inflammation and host metabolic disorders as a result of activation of bacterial fermentation, and altered hepatic lipogenesis, gluconeogenesis, and glycogenolysis in an AHR-dependent manner. CONCLUSION: These findings provide new insights into the biochemical consequences of TCDF exposure involving the alteration of the gut microbiota, modulation of nuclear receptor signaling, and disruption of host metabolism.


Assuntos
Benzofuranos/toxicidade , Poluentes Ambientais/toxicidade , Microbioma Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/microbiologia , Fígado/efeitos dos fármacos , Microbiota/efeitos dos fármacos , Receptores de Hidrocarboneto Arílico/metabolismo , Animais , Ácidos e Sais Biliares/metabolismo , Dieta , Microbioma Gastrointestinal/genética , Homeostase , Fígado/metabolismo , Masculino , Metabolômica , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microbiota/genética , RNA Ribossômico 16S/metabolismo , Receptores de Hidrocarboneto Arílico/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Transdução de Sinais
4.
J Bacteriol ; 195(10): 2262-9, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23475974

RESUMO

The carbonic anhydrase (Cpb) from Clostridium perfringens strain 13, the only carbonic anhydrase encoded in the genome, was characterized both biochemically and physiologically. Heterologously produced and purified Cpb was shown to belong to the type I subclass of the ß class, the first ß class enzyme investigated from a strictly anaerobic species of the domain Bacteria. Kinetic analyses revealed a two-step, ping-pong, zinc-hydroxide mechanism of catalysis with Km and kcat/Km values of 3.1 mM CO2 and 4.8 × 106 s⁻¹ M⁻¹, respectively. Analyses of a cpb deletion mutant of C. perfringens strain HN13 showed that Cpb is strictly required for growth when cultured in semidefined medium and an atmosphere without CO2. The growth of the mutant was the same as that of the parent wild-type strain when cultured in nutrient-rich media with or without CO2 in the atmosphere, although elimination of glucose resulted in decreased production of acetate, propionate, and butyrate. The results suggest a role for Cpb in anaplerotic CO2 fixation reactions by supplying bicarbonate to carboxylases. Potential roles in competitive fitness are discussed.


Assuntos
Proteínas de Bactérias/metabolismo , Anidrases Carbônicas/metabolismo , Clostridium perfringens/enzimologia , Dióxido de Carbono , Anidrases Carbônicas/classificação , Anidrases Carbônicas/genética , Modelos Teóricos , Filogenia
5.
Toxicol Pathol ; 41(2): 410-8, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23197196

RESUMO

The peroxisome proliferator-activated receptor (PPAR) family of nuclear hormone transcription factors (PPARα, PPARß/δ, and PPARγ) is regulated by a wide array of ligands including natural and synthetic chemicals. PPARs have important roles in control of energy metabolism and are known to influence inflammation, differentiation, carcinogenesis, and chemical toxicity. As such, PPARs have been targeted as therapy for common disorders such as cancer, metabolic syndrome, obesity, and diabetes. The recent application of metabolomics, or the global, unbiased measurement of small molecules found in biofluids, or extracts from cells, tissues, or organisms, has advanced our understanding of the varied and important roles that the PPARs have in normal physiology as well as in pathophysiological processes. Continued development and refinement of analytical platforms, and the application of new bioinformatics strategies, have accelerated the widespread use of metabolomics and have allowed further integration of small molecules into systems biology. Recent studies using metabolomics to understand PPARα function, as well as to identify PPARα biomarkers associated with drug efficacy/toxicity and drug-induced liver injury, will be discussed.


Assuntos
Metabolômica/métodos , PPAR alfa/metabolismo , Toxicologia/métodos , Animais , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Cromatografia , Humanos , Espectrometria de Massas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA