Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Metabolomics ; 20(2): 41, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38480600

RESUMO

BACKGROUND: The National Cancer Institute issued a Request for Information (RFI; NOT-CA-23-007) in October 2022, soliciting input on using and reusing metabolomics data. This RFI aimed to gather input on best practices for metabolomics data storage, management, and use/reuse. AIM OF REVIEW: The nuclear magnetic resonance (NMR) Interest Group within the Metabolomics Association of North America (MANA) prepared a set of recommendations regarding the deposition, archiving, use, and reuse of NMR-based and, to a lesser extent, mass spectrometry (MS)-based metabolomics datasets. These recommendations were built on the collective experiences of metabolomics researchers within MANA who are generating, handling, and analyzing diverse metabolomics datasets spanning experimental (sample handling and preparation, NMR/MS metabolomics data acquisition, processing, and spectral analyses) to computational (automation of spectral processing, univariate and multivariate statistical analysis, metabolite prediction and identification, multi-omics data integration, etc.) studies. KEY SCIENTIFIC CONCEPTS OF REVIEW: We provide a synopsis of our collective view regarding the use and reuse of metabolomics data and articulate several recommendations regarding best practices, which are aimed at encouraging researchers to strengthen efforts toward maximizing the utility of metabolomics data, multi-omics data integration, and enhancing the overall scientific impact of metabolomics studies.


Assuntos
Imageamento por Ressonância Magnética , Metabolômica , Metabolômica/métodos , Espectroscopia de Ressonância Magnética/métodos , Espectrometria de Massas/métodos , Automação
2.
J Biol Chem ; 300(3): 105647, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38219818

RESUMO

Pea phytoalexins (-)-maackiain and (+)-pisatin have opposite C6a/C11a configurations, but biosynthetically how this occurs is unknown. Pea dirigent-protein (DP) PsPTS2 generates 7,2'-dihydroxy-4',5'-methylenedioxyisoflav-3-ene (DMDIF), and stereoselectivity toward four possible 7,2'-dihydroxy-4',5'-methylenedioxyisoflavan-4-ol (DMDI) stereoisomers was investigated. Stereoisomer configurations were determined using NMR spectroscopy, electronic circular dichroism, and molecular orbital analyses. PsPTS2 efficiently converted cis-(3R,4R)-DMDI into DMDIF 20-fold faster than the trans-(3R,4S)-isomer. The 4R-configured substrate's near ß-axial OH orientation significantly enhanced its leaving group abilities in generating A-ring mono-quinone methide (QM), whereas 4S-isomer's α-equatorial-OH was a poorer leaving group. Docking simulations indicated that the 4R-configured ß-axial OH was closest to Asp51, whereas 4S-isomer's α-equatorial OH was further away. Neither cis-(3S,4S)- nor trans-(3S,4R)-DMDIs were substrates, even with the former having C3/C4 stereochemistry as in (+)-pisatin. PsPTS2 used cis-(3R,4R)-7,2'-dihydroxy-4'-methoxyisoflavan-4-ol [cis-(3R,4R)-DMI] and C3/C4 stereoisomers to give 2',7-dihydroxy-4'-methoxyisoflav-3-ene (DMIF). DP homologs may exist in licorice (Glycyrrhiza pallidiflora) and tree legume Bolusanthus speciosus, as DMIF occurs in both species. PsPTS1 utilized cis-(3R,4R)-DMDI to give (-)-maackiain 2200-fold more efficiently than with cis-(3R,4R)-DMI to give (-)-medicarpin. PsPTS1 also slowly converted trans-(3S,4R)-DMDI into (+)-maackiain, reflecting the better 4R configured OH leaving group. PsPTS2 and PsPTS1 provisionally provide the means to enable differing C6a and C11a configurations in (+)-pisatin and (-)-maackiain, via identical DP-engendered mono-QM bound intermediate generation, which PsPTS2 either re-aromatizes to give DMDIF or PsPTS1 intramolecularly cyclizes to afford (-)-maackiain. Substrate docking simulations using PsPTS2 and PsPTS1 indicate cis-(3R,4R)-DMDI binds in the anti-configuration in PsPTS2 to afford DMDIF, and the syn-configuration in PsPTS1 to give maackiain.


Assuntos
Pisum sativum , Proteínas de Plantas , Pterocarpanos , Pisum sativum/química , Pisum sativum/metabolismo , Pterocarpanos/química , Pterocarpanos/metabolismo , Estereoisomerismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Modelos Moleculares , Conformação Molecular
3.
J Nat Prod ; 86(11): 2554-2561, 2023 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-37935005

RESUMO

Nuclear magnetic resonance (NMR) data are rarely deposited in open databases, leading to loss of critical scientific knowledge. Existing data reporting methods (images, tables, lists of values) contain less information than raw data and are poorly standardized. Together, these issues limit FAIR (findable, accessible, interoperable, reusable) access to these data, which in turn creates barriers for compound dereplication and the development of new data-driven discovery tools. Existing NMR databases either are not designed for natural products data or employ complex deposition interfaces that disincentivize deposition. Journals, including the Journal of Natural Products (JNP), are now requiring data submission as part of the publication process, creating the need for a streamlined, user-friendly mechanism to deposit and distribute NMR data.


Assuntos
Produtos Biológicos , Bases de Dados Factuais , Espectroscopia de Ressonância Magnética
4.
Methods Enzymol ; 683: 101-150, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37087184

RESUMO

Aquatic plant transition to land, and subsequent terrestrial plant species diversification, was accompanied by the emergence and massive elaboration of plant phenol chemo-diversity. Concomitantly, dirigent protein (DP) and dirigent-like protein subfamilies, derived from large multigene families, emerged and became extensively diversified. DP biochemical functions as gateway entry points into new and diverse plant phenol skeletal types then markedly expanded. DPs have at least eight non-uniformly distributed subfamilies, with different DP subfamily members of known biochemical/physiological function now implicated as gateway entries to lignan, lignin, aromatic diterpenoid, pterocarpan and isoflavene pathways. While some other DP subfamily members have jacalin domains, both these and indeed the majority of DPs throughout the plant kingdom await discovery of their biochemical roles. Methods and approaches were developed to discover DP biochemical function as gateway entry points to distinct plant phenol skeletal types in land plants. Various DP 3D X-ray structural determinations enabled structure-based comparative sequence analysis and modeling to understand similarities and differences among the different DP subfamilies. We consider that the core DP ß-barrel fold and associated characteristics are likely common to all DPs, with several residues conserved and nearly invariant. There is also considerable variation in residue composition and topography of the putative substrate binding pockets, as well as substantial differences in several loops, such as the ß1-ß2 loop. All DPs likely bind and stabilize quinone methide intermediates, while guiding distinctive regio- and/or stereo-chemical entry into Nature's chemo-diverse land plant phenol metabolic classes.


Assuntos
Fenóis , Plantas , Plantas/genética , Plantas/metabolismo , Fenóis/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/química , Filogenia
5.
Biotechnol Biofuels Bioprod ; 15(1): 117, 2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36316752

RESUMO

BACKGROUND: Bacterial lignin degradation is believed to be primarily achieved by a secreted enzyme system. Effects of such extracellular enzyme systems on lignin structural changes and degradation pathways are still not clearly understood, which remains as a bottleneck in the bacterial lignin bioconversion process. RESULTS: This study investigated lignin degradation using an isolated secretome secreted by Pseudomonas putida KT2440 that grew on glucose as the only carbon source. Enzyme assays revealed that the secretome harbored oxidase and peroxidase/Mn2+-peroxidase capacity and reached the highest activity at 120 h of the fermentation time. The degradation rate of alkali lignin was found to be only 8.1% by oxidases, but increased to 14.5% with the activation of peroxidase/Mn2+-peroxidase. Gas chromatography-mass spectrometry (GC-MS) and two-dimensional 1H-13C heteronuclear single-quantum coherence (HSQC) NMR analysis revealed that the oxidases exhibited strong C-C bond (ß-ß, ß-5, and ß-1) cleavage. The activation of peroxidases enhanced lignin degradation by stimulating C-O bond (ß-O-4) cleavage, resulting in increased yields of aromatic monomers and dimers. Further mass spectrometry-based quantitative proteomics measurements comprehensively identified different groups of enzymes particularly oxidoreductases in P. putida secretome, including reductases, peroxidases, monooxygenases, dioxygenases, oxidases, and dehydrogenases, potentially contributed to the lignin degradation process. CONCLUSIONS: Overall, we discovered that bacterial extracellular degradation of alkali lignin to vanillin, vanillic acid, and other lignin-derived aromatics involved a series of oxidative cleavage, catalyzed by active DyP-type peroxidase, multicopper oxidase, and other accessory enzymes. These results will guide further metabolic engineering design to improve the efficiency of lignin bioconversion.

6.
Nat Commun ; 13(1): 5485, 2022 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-36123347

RESUMO

Metagenomics is unearthing the previously hidden world of soil viruses. Many soil viral sequences in metagenomes contain putative auxiliary metabolic genes (AMGs) that are not associated with viral replication. Here, we establish that AMGs on soil viruses actually produce functional, active proteins. We focus on AMGs that potentially encode chitosanase enzymes that metabolize chitin - a common carbon polymer. We express and functionally screen several chitosanase genes identified from environmental metagenomes. One expressed protein showing endo-chitosanase activity (V-Csn) is crystalized and structurally characterized at ultra-high resolution, thus representing the structure of a soil viral AMG product. This structure provides details about the active site, and together with structure models determined using AlphaFold, facilitates understanding of substrate specificity and enzyme mechanism. Our findings support the hypothesis that soil viruses contribute auxiliary functions to their hosts.


Assuntos
Solo , Vírus , Carbono , Quitina , Glicosídeo Hidrolases/metabolismo , Proteínas Virais/genética , Vírus/genética
7.
Nucleic Acids Res ; 50(D1): D665-D677, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34791429

RESUMO

The Natural Products Magnetic Resonance Database (NP-MRD) is a comprehensive, freely available electronic resource for the deposition, distribution, searching and retrieval of nuclear magnetic resonance (NMR) data on natural products, metabolites and other biologically derived chemicals. NMR spectroscopy has long been viewed as the 'gold standard' for the structure determination of novel natural products and novel metabolites. NMR is also widely used in natural product dereplication and the characterization of biofluid mixtures (metabolomics). All of these NMR applications require large collections of high quality, well-annotated, referential NMR spectra of pure compounds. Unfortunately, referential NMR spectral collections for natural products are quite limited. It is because of the critical need for dedicated, open access natural product NMR resources that the NP-MRD was funded by the National Institute of Health (NIH). Since its launch in 2020, the NP-MRD has grown quickly to become the world's largest repository for NMR data on natural products and other biological substances. It currently contains both structural and NMR data for nearly 41,000 natural product compounds from >7400 different living species. All structural, spectroscopic and descriptive data in the NP-MRD is interactively viewable, searchable and fully downloadable in multiple formats. Extensive hyperlinks to other databases of relevance are also provided. The NP-MRD also supports community deposition of NMR assignments and NMR spectra (1D and 2D) of natural products and related meta-data. The deposition system performs extensive data enrichment, automated data format conversion and spectral/assignment evaluation. Details of these database features, how they are implemented and plans for future upgrades are also provided. The NP-MRD is available at https://np-mrd.org.


Assuntos
Produtos Biológicos/química , Bases de Dados Factuais , Espectroscopia de Ressonância Magnética , Software , Produtos Biológicos/classificação , Internet
8.
Analyst ; 146(24): 7670-7681, 2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34806721

RESUMO

The discovery of dirigent proteins (DPs) and their functions in plant phenol biochemistry was made over two decades ago with Forsythia × intermedia. Stereo-selective, DP-guided, monolignol-derived radical coupling in vitro was then reported to afford the optically active lignan, (+)-pinoresinol from coniferyl alcohol, provided one-electron oxidase/oxidant capacity was present. It later became evident that DPs have several distinct sub-families, presumably with different functions. Some known DPs require other essential enzymes/proteins (e.g. oxidases) for their functions. However, the lack of a fully sequenced genome for Forsythia × intermedia made it difficult to profile other components co-purified with the (+)-pinoresinol forming DP. Herein, we used an integrated bottom-up, top-down, and native mass spectrometry (MS) approach to de novo sequence the extracted proteins via adaptation of our initial report of DP solubilization and purification. Using publicly available transcriptome and genomic data from closely related species, we identified 14 proteins that were putatively associated with either DP function or the cell wall. Although their co-occurrence after extraction and chromatographic separation is suggestive for potential protein-protein interactions, none were found to form stable protein complexes with DPs in native MS under the specific experimental conditions we have explored. Interestingly, two new DP homologs were found and they formed hetero-trimers. Molecular dynamics simulations suggested that similar hetero-trimers were possible between Arabidopsis DP homologs with comparable sequence similarities. Nevertheless, our integrated mass spectrometry method development helped prepare for future investigations directed to the discovery of novel proteins and protein-protein interactions. These advantages can be highly beneficial for plant and microbial research where fully sequenced genomes may not be readily available.


Assuntos
Arabidopsis , Forsythia , Genoma , Humanos , Espectrometria de Massas , Proteínas de Plantas/genética
9.
Biotechnol Biofuels ; 14(1): 11, 2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33413621

RESUMO

BACKGROUND: Efficient utilization of all available carbons from lignocellulosic biomass is critical for economic efficiency of a bioconversion process to produce renewable bioproducts. However, the metabolic responses that enable Pseudomonas putida to utilize mixed carbon sources to generate reducing power and polyhydroxyalkanoate (PHA) remain unclear. Previous research has mainly focused on different fermentation strategies, including the sequential feeding of xylose as the growth stage substrate and octanoic acid as the PHA-producing substrate, feeding glycerol as the sole carbon substrate, and co-feeding of lignin and glucose. This study developed a new strategy-co-feeding glycerol and lignin derivatives such as benzoate, vanillin, and vanillic acid in Pseudomonas putida KT2440-for the first time, which simultaneously improved both cell biomass and PHA production. RESULTS: Co-feeding lignin derivatives (i.e. benzoate, vanillin, and vanillic acid) and glycerol to P. putida KT2440 was shown for the first time to simultaneously increase cell dry weight (CDW) by 9.4-16.1% and PHA content by 29.0-63.2%, respectively, compared with feeding glycerol alone. GC-MS results revealed that the addition of lignin derivatives to glycerol decreased the distribution of long-chain monomers (C10 and C12) by 0.4-4.4% and increased the distribution of short-chain monomers (C6 and C8) by 0.8-3.5%. The 1H-13C HMBC, 1H-13C HSQC, and 1H-1H COSY NMR analysis confirmed that the PHA monomers (C6-C14) were produced when glycerol was fed to the bacteria alone or together with lignin derivatives. Moreover, investigation of the glycerol/benzoate/nitrogen ratios showed that benzoate acted as an independent factor in PHA synthesis. Furthermore, 1H, 13C and 31P NMR metabolite analysis and mass spectrometry-based quantitative proteomics measurements suggested that the addition of benzoate stimulated oxidative-stress responses, enhanced glycerol consumption, and altered the intracellular NAD+/NADH and NADPH/NADP+ ratios by up-regulating the proteins involved in energy generation and storage processes, including the Entner-Doudoroff (ED) pathway, the reductive TCA route, trehalose degradation, fatty acid ß-oxidation, and PHA biosynthesis. CONCLUSIONS: This work demonstrated an effective co-carbon feeding strategy to improve PHA content/yield and convert lignin derivatives into value-added products in P. putida KT2440. Co-feeding lignin break-down products with other carbon sources, such as glycerol, has been demonstrated as an efficient way to utilize biomass to increase PHA production in P. putida KT2440. Moreover, the involvement of aromatic degradation favours further lignin utilization, and the combination of proteomics and metabolomics with NMR sheds light on the metabolic and regulatory mechanisms for cellular redox balance and potential genetic targets for a higher biomass carbon conversion efficiency.

10.
PLoS Biol ; 18(9): e3000848, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32898131

RESUMO

Improper lengths of actin-thin filaments are associated with altered contractile activity and lethal myopathies. Leiomodin, a member of the tropomodulin family of proteins, is critical in thin filament assembly and maintenance; however, its role is under dispute. Using nuclear magnetic resonance data and molecular dynamics simulations, we generated the first atomic structural model of the binding interface between the tropomyosin-binding site of cardiac leiomodin and the N-terminus of striated muscle tropomyosin. Our structural data indicate that the leiomodin/tropomyosin complex only forms at the pointed end of thin filaments, where the tropomyosin N-terminus is not blocked by an adjacent tropomyosin protomer. This discovery provides evidence supporting the debated mechanism where leiomodin and tropomodulin regulate thin filament lengths by competing for thin filament binding. Data from experiments performed in cardiomyocytes provide additional support for the competition model; specifically, expression of a leiomodin mutant that is unable to interact with tropomyosin fails to displace tropomodulin at thin filament pointed ends and fails to elongate thin filaments. Together with previous structural and biochemical data, we now propose a molecular mechanism of actin polymerization at the pointed end in the presence of bound leiomodin. In the proposed model, the N-terminal actin-binding site of leiomodin can act as a "swinging gate" allowing limited actin polymerization, thus making leiomodin a leaky pointed-end cap. Results presented in this work answer long-standing questions about the role of leiomodin in thin filament length regulation and maintenance.


Assuntos
Citoesqueleto de Actina/metabolismo , Proteínas dos Microfilamentos/química , Proteínas dos Microfilamentos/metabolismo , Proteínas Musculares/química , Proteínas Musculares/metabolismo , Proteínas de Capeamento de Actina/química , Proteínas de Capeamento de Actina/metabolismo , Citoesqueleto de Actina/química , Actinas/química , Actinas/metabolismo , Animais , Animais Recém-Nascidos , Sítios de Ligação , Células Cultivadas , Proteínas do Citoesqueleto/química , Proteínas do Citoesqueleto/metabolismo , Humanos , Camundongos , Modelos Moleculares , Simulação de Dinâmica Molecular , Miocárdio/metabolismo , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Ratos , Sarcômeros/metabolismo
11.
J Biol Chem ; 295(33): 11584-11601, 2020 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-32565424

RESUMO

The biochemical activities of dirigent proteins (DPs) give rise to distinct complex classes of plant phenolics. DPs apparently began to emerge during the aquatic-to-land transition, with phylogenetic analyses revealing the presence of numerous DP subfamilies in the plant kingdom. The vast majority (>95%) of DPs in these large multigene families still await discovery of their biochemical functions. Here, we elucidated the 3D structures of two pterocarpan-forming proteins with dirigent-like domains. Both proteins stereospecifically convert distinct diastereomeric chiral isoflavonoid precursors to the chiral pterocarpans, (-)- and (+)-medicarpin, respectively. Their 3D structures enabled comparisons with stereoselective lignan- and aromatic terpenoid-forming DP orthologs. Each protein provides entry into diverse plant natural products classes, and our experiments suggest a common biochemical mechanism in binding and stabilizing distinct plant phenol-derived mono- and bis-quinone methide intermediates during different C-C and C-O bond-forming processes. These observations provide key insights into both their appearance and functional diversification of DPs during land plant evolution/adaptation. The proposed biochemical mechanisms based on our findings provide important clues to how additional physiological roles for DPs and proteins harboring dirigent-like domains can now be rationally and systematically identified.


Assuntos
Glycyrrhiza/metabolismo , Ligases/metabolismo , Pisum sativum/metabolismo , Proteínas de Plantas/metabolismo , Pterocarpanos/metabolismo , Cristalografia por Raios X , Glycyrrhiza/química , Indolquinonas/metabolismo , Ligases/química , Simulação de Acoplamento Molecular , Pisum sativum/química , Proteínas de Plantas/química , Conformação Proteica , Domínios Proteicos , Multimerização Proteica
13.
Nat Prod Res ; 34(8): 1175-1179, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30773907

RESUMO

Coronaridine (1) was isolated from the CH2Cl2 root extract of Tabernaemontana ternifolia. The structure of 1 was established from 1D- and 2D-NMR and HR-ESIMS experiments, and by comparison with reported spectroscopic data. To date, this is the first report of compound 1 from T. ternifolia, introduced as new Tabernaemontana species from Philippines in 2005 on the basis of morphological characters. Coronaridine, an iboga-type indole alkaloid, has been isolated from over 50 Tabernaemontana species and can thus be inferred as a chemotaxonomic marker of the genus. T. ternifolia has a distinct arrangement of leaves not known in the genus, but is variable in other genera. Its isolation from endemic T. ternifolia establishes its position in the genus and supports the claim that coronaridine is a chemical marker of the genus Tabernaemontana. Interestingly, coronaridine exhibited relatively weak activity against Mycobacterium tuberculosis H37Rv (MIC 82.64 µg/mL) (Rifampicin MIC 0.05 µg/mL).


Assuntos
Antituberculosos/farmacologia , Alcaloides Indólicos/isolamento & purificação , Tabernaemontana/química , Antituberculosos/isolamento & purificação , Classificação , Ibogaína/análogos & derivados , Ibogaína/isolamento & purificação , Alcaloides Indólicos/química , Mycobacterium tuberculosis/efeitos dos fármacos , Folhas de Planta/anatomia & histologia
14.
PeerJ ; 7: e7055, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31211016

RESUMO

BACKGROUND: Although pathogenic Gram-negative bacteria lack their own ubiquitination machinery, they have evolved or acquired virulence effectors that can manipulate the host ubiquitination process through structural and/or functional mimicry of host machinery. Many such effectors have been identified in a wide variety of bacterial pathogens that share little sequence similarity amongst themselves or with eukaryotic ubiquitin E3 ligases. METHODS: To allow identification of novel bacterial E3 ubiquitin ligase effectors from protein sequences we have developed a machine learning approach, the SVM-based Identification and Evaluation of Virulence Effector Ubiquitin ligases (SIEVE-Ub). We extend the string kernel approach used previously to sequence classification by introducing reduced amino acid (RED) alphabet encoding for protein sequences. RESULTS: We found that 14mer peptides with amino acids represented as simply either hydrophobic or hydrophilic provided the best models for discrimination of E3 ligases from other effector proteins with a receiver-operator characteristic area under the curve (AUC) of 0.90. When considering a subset of E3 ubiquitin ligase effectors that do not fall into known sequence based families we found that the AUC was 0.82, demonstrating the effectiveness of our method at identifying novel functional family members. Feature selection was used to identify a parsimonious set of 10 RED peptides that provided good discrimination, and these peptides were found to be located in functionally important regions of the proteins involved in E2 and host target protein binding. Our general approach enables construction of models based on other effector functions. We used SIEVE-Ub to predict nine potential novel E3 ligases from a large set of bacterial genomes. SIEVE-Ub is available for download at https://doi.org/10.6084/m9.figshare.7766984.v1 or https://github.com/biodataganache/SIEVE-Ub for the most current version.

15.
J Nat Prod ; 82(3): 440-448, 2019 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-30295480

RESUMO

A series of Wrightia hanleyi extracts was screened for activity against Mycobacterium tuberculosis H37Rv. One active fraction contained a compound that initially appeared to be either the isoflavonoid wrightiadione or the alkaloid tryptanthrin, both of which have been previously reported in other Wrightia species. Characterization by NMR and MS, as well as evaluation of the literature describing these compounds, led to the conclusion that wrightiadione (1) was misidentified in the first report of its isolation from W. tomentosa in 1992 and again in 2015 when reported in W. pubescens and W. religiosa. Instead, the molecule described in these reports and in the present work is almost certainly the isobaric (same nominal mass) and isosteric (same number of atoms, valency, and shape) tryptanthrin (2), a well-known quinazolinone alkaloid found in a variety of plants including Wrightia species. Tryptanthrin (2) is also accessible synthetically via several routes and has been thoroughly characterized. Wrightiadione (1) has been synthesized and characterized and may have useful biological activity; however, this compound can no longer be said to be known to exist in Nature. To our knowledge, this misidentification of wrightiadione (1) has heretofore been unrecognized.


Assuntos
Antituberculosos/isolamento & purificação , Apocynaceae/química , Quinazolinas/isolamento & purificação , Antituberculosos/química , Antituberculosos/farmacologia , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Isoflavonas , Espectrometria de Massas , Testes de Sensibilidade Microbiana , Estrutura Molecular , Mycobacterium tuberculosis/efeitos dos fármacos , Espectroscopia de Prótons por Ressonância Magnética , Quinazolinas/química , Quinazolinas/farmacologia
16.
MAbs ; 11(1): 94-105, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30570405

RESUMO

The increased interest in using monoclonal antibodies (mAbs) as a platform for biopharmaceuticals has led to the need for new analytical techniques that can precisely assess physicochemical properties of these large and very complex drugs for the purpose of correctly identifying quality attributes (QA). One QA, higher order structure (HOS), is unique to biopharmaceuticals and essential for establishing consistency in biopharmaceutical manufacturing, detecting process-related variations from manufacturing changes and establishing comparability between biologic products. To address this measurement challenge, two-dimensional nuclear magnetic resonance spectroscopy (2D-NMR) methods were introduced that allow for the precise atomic-level comparison of the HOS between two proteins, including mAbs. Here, an inter-laboratory comparison involving 26 industrial, government and academic laboratories worldwide was performed as a benchmark using the NISTmAb, from the National Institute of Standards and Technology (NIST), to facilitate the translation of the 2D-NMR method into routine use for biopharmaceutical product development. Two-dimensional 1H,15N and 1H,13C NMR spectra were acquired with harmonized experimental protocols on the unlabeled Fab domain and a uniformly enriched-15N, 20%-13C-enriched system suitability sample derived from the NISTmAb. Chemometric analyses from over 400 spectral maps acquired on 39 different NMR spectrometers ranging from 500 MHz to 900 MHz demonstrate spectral fingerprints that are fit-for-purpose for the assessment of HOS. The 2D-NMR method is shown to provide the measurement reliability needed to move the technique from an emerging technology to a harmonized, routine measurement that can be generally applied with great confidence to high precision assessments of the HOS of mAb-based biotherapeutics.


Assuntos
Anticorpos Monoclonais/química , Biofarmácia/normas , Laboratórios/normas , Espectroscopia de Ressonância Magnética/métodos , Humanos , Reprodutibilidade dos Testes
17.
Plant Mol Biol ; 97(1-2): 73-101, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29713868

RESUMO

KEY MESSAGE: Identification of DIR encoding genes in flax genome. Analysis of phylogeny, gene/protein structures and evolution. Identification of new conserved motifs linked to biochemical functions. Investigation of spatio-temporal gene expression and response to stress. Dirigent proteins (DIRs) were discovered during 8-8' lignan biosynthesis studies, through identification of stereoselective coupling to afford either (+)- or (-)-pinoresinols from E-coniferyl alcohol. DIRs are also involved or potentially involved in terpenoid, allyl/propenyl phenol lignan, pterocarpan and lignin biosynthesis. DIRs have very large multigene families in different vascular plants including flax, with most still of unknown function. DIR studies typically focus on a small subset of genes and identification of biochemical/physiological functions. Herein, a genome-wide analysis and characterization of the predicted flax DIR 44-membered multigene family was performed, this species being a rich natural grain source of 8-8' linked secoisolariciresinol-derived lignan oligomers. All predicted DIR sequences, including their promoters, were analyzed together with their public gene expression datasets. Expression patterns of selected DIRs were examined using qPCR, as well as through clustering analysis of DIR gene expression. These analyses further implicated roles for specific DIRs in (-)-pinoresinol formation in seed-coats, as well as (+)-pinoresinol in vegetative organs and/or specific responses to stress. Phylogeny and gene expression analysis segregated flax DIRs into six distinct clusters with new cluster-specific motifs identified. We propose that these findings can serve as a foundation to further systematically determine functions of DIRs, i.e. other than those already known in lignan biosynthesis in flax and other species. Given the differential expression profiles and inducibility of the flax DIR family, we provisionally propose that some DIR genes of unknown function could be involved in different aspects of secondary cell wall biosynthesis and plant defense.


Assuntos
Linho/genética , Regulação da Expressão Gênica de Plantas , Família Multigênica , Proteínas de Plantas/genética , Motivos de Aminoácidos , Butileno Glicóis/metabolismo , Parede Celular/genética , Parede Celular/metabolismo , Evolução Molecular , Linho/classificação , Lignanas/metabolismo , Filogenia , Proteínas de Plantas/química , Reação em Cadeia da Polimerase em Tempo Real
18.
Bioresour Technol ; 257: 172-180, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29500951

RESUMO

The full use of biomass in future biorefineries has stimulated studies on utilization of lignin from agricultural crops, such as coffee husk, a major residue from coffee processing. This study focuses on characterizing the lignin obtained from coffee husk and its further wet oxidation products as a function of alkali loading, temperature and residence time. The lignin fraction after diluted acid and alkali pretreatments is composed primarily of p-hydroxylphenyl units (≥49%), with fewer guaiacyl and syringyl units. Linkages appear to be mainly ß-O-4 ether linkages. Thermal degradation of pretreated lignin during wet oxidation occurred in two stages. Carboxylic acids were the main degradation product. Due to the condensed structure of this lignin, relatively low yields of aromatic aldehydes were achieved, except with temperatures over 210 °C, 5 min residence time and 11.7 wt% NaOH. Optimization of the pretreatment and oxidation parameters are important to maximizing yield of high-value bioproducts from lignin.


Assuntos
Coffea , Lignina , Álcalis , Café , Oxigênio
19.
ChemSusChem ; 11(4): 781-792, 2018 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-29178551

RESUMO

The solubilization and efficient upgrading of high loadings of polyethylene terephthalate (PET) are important challenges, and most solvents for PET are highly toxic. Herein, a low-cost (ca. $1.2 kg-1 ) and biocompatible ionic liquid (IL), cholinium phosphate ([Ch]3 [PO4 ]), is demonstrated for the first time to play bifunctional roles in the solubilization and glycolytic degradation of PET. A high loading of PET (10 wt %) was readily dissolved in [Ch]3 [PO4 ] at relatively low temperatures (120 °C, 3 h) and under water-rich conditions. In-depth analysis of the solution revealed that high PET solubilization in [Ch]3 [PO4 ] could be ascribed to significant PET depolymerization. Acid precipitation yielded terephthalic acid as the dominant depolymerized monomer with a theoretical yield of approximately 95 %. Further exploration showed that in the presence of ethylene glycol (EG), the [Ch]3 [PO4 ]-catalyzed glycolysis of PET could efficiently occur with approximately 100 % conversion of PET and approximately 60.6 % yield of bis(2-hydroxyethyl)terephthalate under metal-free conditions. The IL could be reused at least three times without an apparent decrease in activity. NMR spectroscopy analysis revealed that strong hydrogen-bonding interactions between EG and the IL played an important role in the activation of EG and promotion of the glycolysis reaction. This study opens up avenues for exploring environmentally benign and efficient IL technology for solubilizing and recycling postconsumer polyester plastics.


Assuntos
Líquidos Iônicos , Ácidos Ftálicos/síntese química , Polietilenotereftalatos/química , Etilenoglicol/química , Glicólise , Química Verde/métodos , Líquidos Iônicos/economia , Poliésteres/química , Solubilidade , Solventes
20.
Science ; 358(6369): 1461-1466, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29242347

RESUMO

Mixed-chirality peptide macrocycles such as cyclosporine are among the most potent therapeutics identified to date, but there is currently no way to systematically search the structural space spanned by such compounds. Natural proteins do not provide a useful guide: Peptide macrocycles lack regular secondary structures and hydrophobic cores, and can contain local structures not accessible with l-amino acids. Here, we enumerate the stable structures that can be adopted by macrocyclic peptides composed of l- and d-amino acids by near-exhaustive backbone sampling followed by sequence design and energy landscape calculations. We identify more than 200 designs predicted to fold into single stable structures, many times more than the number of currently available unbound peptide macrocycle structures. Nuclear magnetic resonance structures of 9 of 12 designed 7- to 10-residue macrocycles, and three 11- to 14-residue bicyclic designs, are close to the computational models. Our results provide a nearly complete coverage of the rich space of structures possible for short peptide macrocycles and vastly increase the available starting scaffolds for both rational drug design and library selection methods.


Assuntos
Simulação por Computador , Desenho Assistido por Computador , Modelos Químicos , Peptídeos/química , Estabilidade Proteica , Desenho de Fármacos , Ressonância Magnética Nuclear Biomolecular , Dobramento de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA