Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 8288, 2024 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594299

RESUMO

Hand dysfunction is a common observation after arteriovenous fistula (AVF) creation for hemodialysis access and has a variable clinical phenotype; however, the underlying mechanism responsible is unclear. Grip strength changes are a common metric used to assess AVF-associated hand disability but has previously been found to poorly correlate with the hemodynamic perturbations post-AVF placement implicating other tissue-level factors as drivers of hand outcomes. In this study, we sought to test if expression of a mitochondrial targeted catalase (mCAT) in skeletal muscle could reduce AVF-related limb dysfunction in mice with chronic kidney disease (CKD). Male and female C57BL/6J mice were fed an adenine-supplemented diet to induce CKD prior to placement of an AVF in the iliac vascular bundle. Adeno-associated virus was used to drive expression of either a green fluorescent protein (control) or mCAT using the muscle-specific human skeletal actin (HSA) gene promoter prior to AVF creation. As expected, the muscle-specific AAV-HSA-mCAT treatment did not impact blood urea nitrogen levels (P = 0.72), body weight (P = 0.84), or central hemodynamics including infrarenal aorta and inferior vena cava diameters (P > 0.18) or velocities (P > 0.38). Hindlimb perfusion recovery and muscle capillary densities were also unaffected by AAV-HSA-mCAT treatment. In contrast to muscle mass and myofiber size which were not different between groups, both absolute and specific muscle contractile forces measured via a nerve-mediated in-situ preparation were significantly greater in AAV-HSA-mCAT treated mice (P = 0.0012 and P = 0.0002). Morphological analysis of the post-synaptic neuromuscular junction uncovered greater acetylcholine receptor cluster areas (P = 0.0094) and lower fragmentation (P = 0.0010) in AAV-HSA-mCAT treated mice. Muscle mitochondrial oxidative phosphorylation was not different between groups, but AAV-HSA-mCAT treated mice had lower succinate-fueled mitochondrial hydrogen peroxide emission compared to AAV-HSA-GFP mice (P < 0.001). In summary, muscle-specific scavenging of mitochondrial hydrogen peroxide significantly improves neuromotor function in mice with CKD following AVF creation.


Assuntos
Fístula Arteriovenosa , Derivação Arteriovenosa Cirúrgica , Falência Renal Crônica , Insuficiência Renal Crônica , Humanos , Masculino , Feminino , Animais , Camundongos , Catalase , Peróxido de Hidrogênio , Camundongos Endogâmicos C57BL , Insuficiência Renal Crônica/terapia , Diálise Renal , Força Muscular , Falência Renal Crônica/terapia
2.
Am J Physiol Renal Physiol ; 325(3): F271-F282, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37439200

RESUMO

The objective of the present study was to determine if treatment with N-acetylcysteine (NAC) could reduce access-related limb dysfunction in mice. Male and female C57BL6J mice were fed an adenine-supplemented diet to induce chronic kidney disease (CKD) prior to the surgical creation of an arteriovenous fistula (AVF) in the iliac vascular bundle. AVF creation significantly increased peak aortic and infrarenal vena cava blood flow velocities, but NAC treatment had no significant impact, indicating that fistula maturation was not impacted by NAC treatment. Hindlimb muscle and paw perfusion recovery and muscle capillary density in the AVF limb were unaffected by NAC treatment. However, NAC treatment significantly increased the mass of the tibialis anterior (P = 0.0120) and soleus (P = 0.0452) muscles post-AVF. There was a significant main effect of NAC treatment on hindlimb grip strength at postoperative day 12 (POD 12) (P = 0.0003), driven by significantly higher grip strength in both male (P = 0.0273) and female (P = 0.0031) mice treated with NAC. There was also a significant main effect of NAC treatment on the walking speed at postoperative day 12 (P = 0.0447), and post hoc testing revealed an improvement in NAC-treated male mice (P = 0.0091). The area of postsynaptic acetylcholine receptors (P = 0.0263) and motor endplates (P = 0.0240) was also increased by NAC treatment. Interestingly, hindlimb skeletal muscle mitochondrial oxidative phosphorylation trended higher in NAC-treated female mice but was not statistically significant (P = 0.0973). Muscle glutathione levels and redox status were not significantly impacted by NAC treatment in either sex. In summary, NAC treatment attenuated some aspects of neuromotor pathology in mice with chronic kidney disease following AVF creation.NEW & NOTEWORTHY Hemodialysis via autogenous arteriovenous fistula (AVF) is the preferred first-line modality for renal replacement therapy in patients with end-stage kidney disease. However, patients undergoing AVF surgery frequently experience a spectrum of hand disability symptoms postsurgery including weakness and neuromotor dysfunction. Unfortunately, no treatment is currently available to prevent or mitigate these symptoms. Here, we provide evidence that daily N-acetylcysteine supplementation can attenuate some aspects of limb neuromotor function in a preclinical mouse model of AVF.


Assuntos
Fístula Arteriovenosa , Derivação Arteriovenosa Cirúrgica , Falência Renal Crônica , Insuficiência Renal Crônica , Masculino , Feminino , Animais , Camundongos , Acetilcisteína/farmacologia , Diálise Renal , Insuficiência Renal Crônica/terapia , Insuficiência Renal Crônica/etiologia , Falência Renal Crônica/terapia , Derivação Arteriovenosa Cirúrgica/efeitos adversos , Estudos Retrospectivos
3.
JVS Vasc Sci ; 3: 345-362, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36439698

RESUMO

Objective: Hand disability after hemodialysis access surgery has been common yet has remained poorly understood. Arteriovenous fistula (AVF) hemodynamic perturbations have not reliably correlated with the observed measures of hand function. Chronic kidney disease (CKD) is known to precipitate myopathy; however, the interactive influences of renal insufficiency and ischemia on limb outcomes have remained unknown. We hypothesized that CKD would contribute to access-related hand dysfunction via altered mitochondrial bioenergetics. Using a novel murine AVF model, we sought to characterize the skeletal muscle outcomes in mice with and without renal insufficiency. Methods: Male, 8-week-old C57BL/6J mice were fed either an adenine-supplemented diet to induce renal insufficiency (CKD) or a casein-based control chow (CON). After 2 weeks of dietary intervention, the mice were randomly assigned to undergo iliac AVF surgery (n = 12/group) or a sham operation (n = 5/group). Measurements of aortoiliac hemodynamics, hindlimb perfusion, and hindlimb motor function were collected for 2 weeks. The mice were sacrificed on postoperative day 14 to assess skeletal muscle histopathologic features and mitochondrial function. To assess the late outcome trends, 20 additional mice had undergone CKD induction and sham (n = 5) or AVF (n = 15) surgery and followed up for 6 weeks postoperatively before sacrifice. Results: The adenine-fed mice had had a significantly reduced glomerular filtration rate and elevated blood urea nitrogen, confirming the presence of CKD. The sham mice had a 100% survival rate and AVF cohorts an 82.1% survival rate with an 84.4% AVF patency rate. The aorta and inferior vena cava velocity measurements and the vessel diameter had increased after AVF creation (P < .0001 vs sham). The AVF groups had had a 78.4% deficit in paw perfusion compared with the contralateral limb after surgery (P < .0001 vs sham). Mitochondrial function was influenced by the presence of CKD. The respiratory capacity of the CKD-sham mice (8443 ± 1509 pmol/s/mg at maximal energy demand) was impaired compared with that of the CON-sham mice (12,870 ± 1203 pmol/s/mg; P = .0001). However, this difference was muted after AVF creation (CKD-AVF, 4478 ± 3685 pmol/s/mg; CON-AVF, 5407 ± 3582 pmol/s/mg; P = .198). The AVF cohorts had had impairments in grip strength (vs sham; P < .0001) and gait (vs sham; P = .012). However, the presence of CKD did not significantly alter the measurements of gross muscle function. The paw perfusion deficits had persisted 6 weeks postoperatively for the AVF mice (P < .0001 vs sham); however, the myopathy had resolved (grip strength, P = .092 vs sham; mitochondrial respiration, P = .108 vs sham). Conclusions: CKD and AVF-induced distal limb ischemia both impaired skeletal muscle mitochondrial function. Renal insufficiency was associated with a baseline myopathy that was exacerbated by the acute ischemic injury resulting from AVF creation. However, ischemia was the primary driver of the observed phenotype of gross motor impairment. This model reliably reproduced the local and systemic influences that contribute to access-related hand dysfunction and provides a platform for further mechanistic and therapeutic investigation.

4.
Am J Physiol Renal Physiol ; 323(5): F577-F589, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36007889

RESUMO

End-stage kidney disease, the most advanced stage of chronic kidney disease (CKD), requires renal replacement therapy or kidney transplant to sustain life. To accomplish durable dialysis access, the creation of an arteriovenous fistula (AVF) has emerged as a preferred approach. Unfortunately, a significant proportion of patients that receive an AVF experience some form of hand dysfunction; however, the mechanisms underlying these side effects are not understood. In this study, we used nuclear magnetic resonance spectroscopy to investigate the muscle metabolome following iliac AVF placement in mice with CKD. To induce CKD, C57BL6J mice were fed an adenine-supplemented diet for 3 wk and then randomized to receive AVF or sham surgery. Two weeks following surgery, the quadriceps muscles were rapidly dissected and snap frozen for metabolite extraction and subsequent nuclear magnetic resonance analysis. Principal component analysis demonstrated clear separation between groups, confirming a unique metabolome in mice that received an AVF. AVF creation resulted in reduced levels of creatine, ATP, and AMP as well as increased levels of IMP and several tricarboxylic acid cycle metabolites suggesting profound energetic stress. Pearson correlation and multiple linear regression analyses identified several metabolites that were strongly linked to measures of limb function (grip strength, gait speed, and mitochondrial respiration). In summary, AVF creation generates a unique metabolome profile in the distal skeletal muscle indicative of an energetic crisis and myosteatosis.NEW & NOTEWORTHY Creation of an arteriovenous fistula (AVF) is the preferred approach for dialysis access, but some patients experience hand dysfunction after AVF creation. In this study, we provide a detailed metabolomic analysis of the limb muscle in a murine model of AVF. AVF creation resulted in metabolite changes associated with an energetic crisis and myosteatosis that associated with limb function.


Assuntos
Fístula Arteriovenosa , Derivação Arteriovenosa Cirúrgica , Falência Renal Crônica , Insuficiência Renal Crônica , Animais , Camundongos , Adenina , Monofosfato de Adenosina , Trifosfato de Adenosina , Derivação Arteriovenosa Cirúrgica/efeitos adversos , Creatina , Músculos , Diálise Renal/métodos , Insuficiência Renal Crônica/etiologia
5.
JVS Vasc Sci ; 2: 247-259, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34816137

RESUMO

OBJECTIVE: Hemodialysis access-related hand dysfunction is a common clinical feature of patients with chronic kidney disease (CKD) after arteriovenous fistula (AVF) placement. The heterogeneity in symptoms and the lack of a predictive association with changes in hemodynamic alterations precipitated by the AVF suggest that other factors are involved in the mechanisms responsible for causing hand and limb dysfunction postoperatively. To the best of our knowledge, no suitable animal models have provided a platform for performing preclinical experiments designed to elucidate the biologic drivers of access-related hand dysfunction. Therefore, our objective was to develop a novel murine AVF model that could be used to study dialysis access-related limb dysfunction. METHODS: Male 8-week-old C57BL/6J mice (n = 15/group) were exposed to either an adenine-supplemented diet to induce CKD or casein-based chow (control). Four weeks after the diet intervention, the mice were randomly assigned to receive an iliac AVF (n = 10/group) or sham surgery (n = 5/group) on the left hindlimb. The mice were sacrificed 2 weeks after surgery, and AVF specimens and hindlimb skeletal muscles were collected for further analysis. RESULTS: Before AVF or sham surgery, the glomerular filtration rates were significantly reduced and the blood urea nitrogen levels were significantly elevated in the CKD groups compared with the controls (P < .05). AVF surgery was associated with an ∼80% patency rate among the survivors (four control and three CKD mice died postoperatively). Patency was verified by changes in hemodynamics using Doppler ultrasound imaging and altered histologic morphology. Compared with sham surgery, AVF surgery reduced ipsilateral hindlimb perfusion to the tibialis anterior muscle (20%-40%) and paw (40%-50%), which remained stable until euthanasia. Analysis of gastrocnemius muscle mitochondrial respiratory function uncovered a significant decrease (40%-50%) in mitochondrial function in the AVF mice. No changes were found in the muscle mass, myofiber cross-sectional area, or centrally nucleated fiber proportion in the extensor digitorum longus and soleus muscles between the sham and AVF mice. CONCLUSIONS: The results from the present study have demonstrated that iliac AVF formation is a practical animal model that facilitates examination of hemodialysis access-related limb dysfunction. AVF surgery produced the expected hemodynamic changes, and evaluation of the limb muscle revealed a substantial mitochondrial impairment that was present without changes in muscle size.

6.
Am J Physiol Renal Physiol ; 321(1): F106-F119, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34121452

RESUMO

Preclinical animal models of chronic kidney disease (CKD) are critical to investigate the underlying mechanisms of disease and to evaluate the efficacy of novel therapeutics aimed to treat CKD-associated pathologies. The objective of the present study was to compare the adenine diet and 5/6 nephrectomy (Nx) CKD models in mice. Male and female 10-wk-old C57BL/6J mice (n = 5-9 mice/sex/group) were randomly allocated to CKD groups (0.2-0.15% adenine-supplemented diet or 5/6 Nx surgery) or the corresponding control groups (casein diet or sham surgery). Following the induction of CKD, the glomerular filtration rate was reduced to a similar level in both adenine and 5/6 Nx mice (adenine diet-fed male mice: 81.1 ± 41.9 µL/min vs. 5/6 Nx male mice: 160 ± 80.9 µL/min, P = 0.5875; adenine diet-fed female mice: 112.9 ± 32.4 µL/min vs. 5/6 Nx female mice: 107.0 ± 45.7 µL/min, P = 0.9995). Serum metabolomics analysis indicated that established uremic toxins were robustly elevated in both CKD models, although some differences were observed between CKD models (i.e., p-cresol sulfate). Dysregulated phosphate homeostasis was observed in the adenine model only, whereas Ca2+ homeostasis was disturbed in male mice with both CKD models. Compared with control mice, muscle mass and myofiber cross-sectional areas of the extensor digitorum longus and soleus muscles were ∼18-24% smaller in male CKD mice regardless of the model but were not different in female CKD mice (P > 0.05). Skeletal muscle mitochondrial respiratory function was significantly decreased (19-24%) in CKD mice in both models and sexes. These findings demonstrate that adenine diet and 5/6 Nx models of CKD have similar levels of renal dysfunction and skeletal myopathy. However, the adenine diet model demonstrated superior performance with regard to mortality (∼20-50% mortality for 5/6 Nx vs. 0% mortality for the adenine diet, P < 0.05 for both sexes) compared with the 5/6 Nx surgical model.NEW & NOTEWORTHY Numerous preclinical models of chronic kidney disease have been used to evaluate skeletal muscle pathology; however, direct comparisons of popular models are not available. In this study, we compared adenine-induced nephropathy and 5/6 nephrectomy models. Both models produced equivalent levels of muscle atrophy and mitochondrial impairment, but the adenine model exhibited lower mortality rates, higher consistency in uremic toxin levels, and dysregulated phosphate homeostasis compared with the 5/6 nephrectomy model.


Assuntos
Adenina/farmacologia , Taxa de Filtração Glomerular/genética , Músculo Esquelético/metabolismo , Insuficiência Renal Crônica/metabolismo , Animais , Modelos Animais de Doenças , Rim/metabolismo , Rim/patologia , Masculino , Camundongos Endogâmicos C57BL , Músculo Esquelético/patologia , Doenças Musculares/patologia , Doenças Musculares/fisiopatologia , Nefrectomia/métodos , Insuficiência Renal Crônica/tratamento farmacológico , Insuficiência Renal Crônica/patologia , Uremia/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA