Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Bioeng Transl Med ; 8(5): e10551, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37693052

RESUMO

A promising strategy to cure HIV-infected individuals is to use latency reversing agents (LRAs) to reactivate latent viruses, followed by host clearance of infected reservoir cells. However, reactivation of latent proviruses within infected cells is heterogeneous and often incomplete. This fact limits strategies to cure HIV which may require complete elimination of viable virus from all cellular reservoirs. For this reason, understanding the mechanism(s) of reactivation of HIV within cellular reservoirs is critical to achieve therapeutic success. Methodologies enabling temporal tracking of single cells as they reactivate followed by sorting and molecular analysis of those cells are urgently needed. To this end, microraft arrays were adapted to image T-lymphocytes expressing mCherry under the control of the HIV long terminal repeat (LTR) promoter, in response to the application of LRAs (prostratin, iBET151, and SAHA). In response to prostratin, iBET151, and SAHA, 30.5%, 11.2%, and 12.1% percentage of cells, respectively. The arrays enabled large numbers of single cells (>25,000) to be imaged over time. mCherry fluorescence quantification identified cell subpopulations with differing reactivation kinetics. Significant heterogeneity was observed at the single-cell level between different LRAs in terms of time to reactivation, rate of mCherry fluorescence increase upon reactivation, and peak fluorescence attained. In response to prostratin, subpopulations of T lymphocytes with slow and fast reactivation kinetics were identified. Single T-lymphocytes that were either fast or slow reactivators were sorted, and single-cell RNA-sequencing was performed. Different genes associated with inflammation, immune activation, and cellular and viral transcription factors were found.

2.
Biomolecules ; 13(5)2023 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-37238653

RESUMO

Nanomaterials design, synthesis, and characterization are ever-expanding approaches toward developing biodevices or neural interfaces to treat neurological diseases. The ability of nanomaterials features to tune neuronal networks' morphology or functionality is still under study. In this work, we unveil how interfacing mammalian brain cultured neurons and iron oxide nanowires' (NWs) orientation affect neuronal and glial densities and network activity. Iron oxide NWs were synthesized by electrodeposition, fixing the diameter to 100 nm and the length to 1 µm. Scanning electron microscopy, Raman, and contact angle measurements were performed to characterize the NWs' morphology, chemical composition, and hydrophilicity. Hippocampal cultures were seeded on NWs devices, and after 14 days, the cell morphology was studied by immunocytochemistry and confocal microscopy. Live calcium imaging was performed to study neuronal activity. Using random nanowires (R-NWs), higher neuronal and glial cell densities were obtained compared with the control and vertical nanowires (V-NWs), while using V-NWs, more stellate glial cells were found. R-NWs produced a reduction in neuronal activity, while V-NWs increased the neuronal network activity, possibly due to a higher neuronal maturity and a lower number of GABAergic neurons, respectively. These results highlight the potential of NWs manipulations to design ad hoc regenerative interfaces.


Assuntos
Nanoestruturas , Nanofios , Animais , Nanofios/química , Óxido Ferroso-Férrico , Compostos Férricos , Mamíferos
3.
bioRxiv ; 2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36778314

RESUMO

A promising strategy to cure HIV infected individuals is to use latency reversing agents (LRAs) to reactivate latent viruses, followed by host clearance of infected reservoir cells. However, reactivation of latent proviruses within infected cells is heterogeneous and often incomplete. This fact limits strategies to cure HIV which may require complete elimination of viable virus from all cellular reservoirs. For this reason, understanding the mechanism(s) of reactivation of HIV within cellular reservoirs is critical to achieve therapeutic success. Methodologies enabling temporal tracking of single cells as they reactivate followed by sorting and molecular analysis of those cells are urgently needed. To this end, microraft arrays were adapted to image T-lymphocytes expressing mCherry under the control of the HIV long terminal repeat (LTR) promoter, in response to the application of various LRAs (prostratin, iBET151, and SAHA). In response to prostratin, iBET151, and SAHA, 30.5 %, 11.2 %, and 12.1 % percentage of cells respectively, reactivated similar to that observed in other experimental systems. The arrays enabled large numbers of single cells (>25,000) to be imaged over time. mCherry fluorescence quantification identified cell subpopulations with differing reactivation kinetics. Significant heterogeneity was observed at the single cell level between different LRAs in terms of time to reactivation, rate of mCherry fluorescence increase upon reactivation, and peak fluorescence attained. In response to prostratin, subpopulations of T lymphocytes with slow and fast reactivation kinetics were identified. Single T-lymphocytes that were either fast or slow reactivators were sorted, and single-cell RNA-sequencing was performed. Different genes associated with inflammation, immune activation, and cellular and viral transcription factors were found. These results advance our conceptual understanding of HIV reactivation dynamics at the single-cell level toward a cure for HIV.

4.
Cancers (Basel) ; 15(2)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36672333

RESUMO

Colorectal cancer is the third most common cancer worldwide. Despite recent advances in the treatment of this pathology, which include a personalized approach using radio- and chemotherapies in combination with advanced surgical techniques, it is imperative to enhance the performance of these treatments and decrease their detrimental side effects on patients' health. Nanomedicine is likely the pathway towards solving this challenge by enhancing both the therapeutic and diagnostic capabilities. In particular, plasmonic nanoparticles show remarkable potential due to their dual therapeutic functionalities as photothermal therapy agents and as radiosensitizers in radiotherapy. Their dual functionality, high biocompatibility, easy functionalization, and targeting capabilities make them potential agents for inducing efficient cancer cell death with minimal side effects. This review aims to identify the main challenges in the diagnosis and treatment of colorectal cancer. The heterogeneous nature of this cancer is also discussed from a single-cell point of view. The most relevant works in photo- and radiotherapy using nanotechnology-based therapies for colorectal cancer are addressed, ranging from in vitro studies (2D and 3D cell cultures) to in vivo studies and clinical trials. Although the results using nanoparticles as a photo- and radiosensitizers in photo- and radiotherapy are promising, preliminary studies showed that the possibility of combining both therapies must be explored to improve the treatment efficiency.

5.
Micromachines (Basel) ; 13(9)2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36144015

RESUMO

Microarrays are essential components of analytical instruments. The elements of microarrays may be imbued with additional functionalities and encodings using composite materials and structures, but traditional microfabrication methods present substantial barriers to fabrication, design, and scalability. In this work, a tool-free technique was reported to additively batch-construct micromolded, composite, and arrayed microstructures. The method required only a compatible carrier fluid to deposit a material onto a substrate with some topography. Permutations of this basic fabrication approach were leveraged to gain control over the volumes and positions of deposited materials within the microstructures. As a proof of concept, cell micro-carrier arrays were constructed to demonstrate a range of designs, compositions, functionalities, and applications for composite microstructures. This approach is envisioned to enable the fabrication of complex composite biological and synthetic microelements for biosensing, cellular analysis, and biochemical screening.

6.
Nanomaterials (Basel) ; 11(11)2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34835651

RESUMO

Iron oxide nanoparticles (IONPs) are suitable materials for contrast enhancement in magnetic resonance imaging (MRI). Their potential clinical applications range from diagnosis to therapy and follow-up treatments. However, a deeper understanding of the interaction between IONPs, culture media and cells is necessary for expanding the application of this technology to different types of cancer therapies. To achieve new insights of these interactions, a set of IONPs were prepared with the same inorganic core and five distinct coatings, to study their aggregation and interactions in different physiological media, as well as their cell labelling efficiency. Then, a second set of IONPs, with six different core sizes and the same coating, were used to study how the core size affects cell labelling and MRI in vitro. Here, IONPs suspended in biological media experience a partial removal of the coating and adhesion of molecules. The FBS concentration alters the labelling of all types of IONPs and hydrodynamic sizes ≥ 300 nm provide the greatest labelling using the centrifugation-mediated internalization (CMI). The best contrast for MRI results requires a core size range between 12-14 nm coated with dimercaptosuccinic acid (DMSA) producing R2* values of 393.7 s-1 and 428.3 s-1, respectively. These findings will help to bring IONPs as negative contrast agents into clinical settings.

7.
Lab Chip ; 21(17): 3204-3218, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34346456

RESUMO

A common procedure performed throughout biomedical research is the selection and isolation of biological entities such as organelles, cells and organoids from a mixed population. In this review, we describe the development and application of microraft arrays, an analysis and isolation platform which enables a vast range of criteria and strategies to be used when separating biological entities. The microraft arrays are comprised of elastomeric microwells with detachable polymer bases (microrafts) that act as capture and culture sites as well as supporting carriers during cell isolation. The technology is elegant in its simplicity and can be implemented for samples possessing tens to millions of objects yielding a flexible platform for applications such as single-cell RNA sequencing, subcellular organelle capture and assay, high-throughput screening and development of CRISPR gene-edited cell lines, and organoid manipulation and selection. The transparent arrays are compatible with a multitude of imaging modalities enabling selection based on 2D or 3D spatial phenotypes or temporal properties. Each microraft can be individually isolated on demand with retention of high viability due to the near zero hydrodynamic stress imposed upon the cells during microraft release, capture and deposition. The platform has been utilized as a simple manual add-on to a standard microscope or incorporated into fully automated instruments that implement state-of-the-art imaging algorithms and machine learning. The vast array of selection criteria enables separations not possible with conventional sorting methods, thus garnering widespread interest in the biological and pharmaceutical sciences.


Assuntos
Ensaios de Triagem em Larga Escala , Tecnologia , Movimento Celular , Separação Celular , Análise de Sequência de RNA
8.
Trends Biotechnol ; 39(6): 613-623, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33190968

RESUMO

Technologies capable of cell separation based on cell images provide powerful tools enabling cell selection criteria that rely on spatially or temporally varying properties. Image-based cell sorting (IBCS) systems utilize microfluidic or microarray platforms, each having unique characteristics and applications. The advent of IBCS marks a new paradigm in which cell phenotype and behavior can be explored with high resolution and tied to cellular physiological and omics data, providing a deeper understanding of single-cell physiology and the creation of cell lines with unique properties. Cell sorting guided by high-content image information has far-reaching implications in biomedical research, clinical medicine, and pharmaceutical development.


Assuntos
Fenômenos Fisiológicos Celulares , Separação Celular , Microfluídica , Separação Celular/instrumentação , Separação Celular/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA