Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(21): 14479-14492, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38572736

RESUMO

The sensitization of surface-anchored organic dyes on semiconductor nanocrystals through energy transfer mechanisms has received increasing attention owing to their potential applications in photodynamic therapy, photocatalysis, and photon upconversion. Here, we investigate the sensitization mechanisms through visible-light excitation of two nanohybrids based on CsPbBr3 perovskite nanocrystals (NC) functionalized with borondipyrromethene (BODIPY) dyes, specifically 8-(4-carboxyphenyl)-1,3,5,7-tetramethyl-4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BDP) and 8-(4-carboxyphenyl)-2,6-diiodo-1,3,5,7-tetramethyl-4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (I2-BDP), named as NC@BDP and NC@I2-BDP, respectively. The ability of I2-BDP dyes to extract hot hole carriers from the perovskite nanocrystals is comprehensively investigated by combining steady-state and time-resolved fluorescence as well as femtosecond transient absorption spectroscopy with spectroelectrochemistry and quantum chemical theoretical calculations, which together provide a complete overview of the phenomena that take place in the nanohybrid. Förster resonance energy transfer (FRET) dominates (82%) the photosensitization of the singlet excited state of BDP in the NC@BDP nanohybrid with a rate constant of 3.8 ± 0.2 × 1010 s-1, while charge transfer (64%) mediated by an ultrafast charge transfer rate constant of 1.00 ± 0.08 × 1012 s-1 from hot states and hole transfer from the band edge is found to be mainly responsible for the photosensitization of the triplet excited state of I2-BDP in the NC@I2-BDP nanohybrid. These findings suggest that the NC@I2-BDP nanohybrid is a unique energy transfer photocatalyst for oxidizing α-terpinene to ascaridole through singlet oxygen formation.

2.
Front Chem ; 11: 1292541, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38025083

RESUMO

Donor-acceptor-substituted biphenyl derivatives are particularly interesting model compounds, which exhibit intramolecular charge transfer because of the extent of charge transfer between both substituents. The connection of a 4-[1,1'-biphenyl]-4-yl-2-pyrimidinyl) moiety to differently disubstituted amino groups at the biphenyl terminal can offer push-pull compounds with distinctive photophysical properties. Herein, we report a comprehensive study of the influence of the torsion angle of the disubstituted amino group on the emissive properties of two pull-push systems: 4-[4-(4-N,N-dimethylaminophenyl)phenyl]-2,6-diphenylpyrimidine (D1) and 4-[4-(4-N,N-diphenylaminophenyl)phenyl]-2,6-diphenylpyrimidine (D2). The torsion angle of the disubstituted amino group, either N,N-dimethyl-amine or N,N-diphenyl-amine, at the biphenyl end governs their emissive properties. A drastic fluorescence quenching occurs in D1 as the solvent polarity increases, whereas D2 maintains its emission independently of the solvent polarity. Theoretical calculations on D1 support the presence of a twisted geometry for the lowest energy, charge-transfer excited state (S1,90), which corresponds to the minimum energy structure in polar solvents and presents a small energy barrier to move from the excited to the ground state, thereby favoring the non-radiative pathway and reducing the fluorescence efficiency. In contrast, this twisted structure is absent in D2 due to the steric hindrance of the phenyl groups attached to the amine group, making the non-radiative decay less favorable. Our findings provide insights into the crucial role of the substituent in the donor moiety of donor-acceptor systems on both the singlet excited state and the intramolecular charge-transfer process.

3.
ACS Energy Lett ; 8(6): 2789-2798, 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37324538

RESUMO

We illustrate here the high photocatalytic activity of sustainable lead-free metal halide nanocrystals (NCs), namely, Cs3Sb2Br9 NCs, in the reduction of p-substituted benzyl bromides in the absence of a cocatalyst. The electronic properties of the benzyl bromide substituents and the substrate affinity to the NC surface determine the selectivity in C-C homocoupling under visible light irradiation. This photocatalyst can be reused for at least three cycles and preserves its good performance with a turnover number of ca. 105,000.

4.
Molecules ; 26(18)2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34577092

RESUMO

This review focuses on the recent developments in synthesis, properties, and applications of a relatively new family of photoactive porous composites, integrated by metal halide perovskite (MHP) nanocrystals and metal-organic frameworks (MOFs). The synergy between the two systems has led to materials (MHP@MOF composites) with new functionalities along with improved properties and phase stability, thus broadening their applications in multiple areas of research such as sensing, light-harvesting solar cells, light-emitting device technology, encryption, and photocatalysis. The state of the art, recent progress, and most promising routes for future research on these photoactive porous composites are presented in the end.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA