Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Pharmaceuticals (Basel) ; 16(9)2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37765140

RESUMO

Giardia lamblia is a highly infectious protozoan that causes giardiasis, a gastrointestinal disease with short-term and long-lasting symptoms. The currently available drugs for giardiasis treatment have limitations such as side effects and drug resistance, requiring the search for new antigiardial compounds. Drug repurposing has emerged as a promising strategy to expedite the drug development process. In this study, we evaluated the cytotoxic effect of terfenadine on Giardia lamblia trophozoites. Our results showed that terfenadine inhibited the growth and cell viability of Giardia trophozoites in a time-dose-dependent manner. In addition, using scanning electron microscopy, we identified morphological damage; interestingly, an increased number of protrusions on membranes and tubulin dysregulation with concomitant dysregulation of Giardia GiK were observed. Importantly, terfenadine showed low toxicity for Caco-2 cells, a human intestinal cell line. These findings highlight the potential of terfenadine as a repurposed drug for the treatment of giardiasis and warrant further investigation to elucidate its precise mechanism of action and evaluate its efficacy in future research.

2.
Antibiotics (Basel) ; 11(9)2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-36140009

RESUMO

Salmonella spp. is one of the most common food poisoning pathogens and the main cause of diarrheal diseases in humans in developing countries. The increased Salmonella resistance to antimicrobials has led to the search for new alternatives, including natural compounds such as curcumin, which has already demonstrated a bactericidal effect; however, in Gram-negatives, there is much controversy about this effect, as it is highly variable. In this study, we aimed to verify the antibacterial activity of curcumin against the Salmonella enterica serovar Typhimurium growth rate, virulence, and pathogenicity. The strain was exposed to 110, 220 or 330 µg/mL curcumin, and by complementary methods (spectrophotometric, pour plate and MTT assays), we determined its antibacterial activity. To elucidate whether curcumin regulates the expression of virulence genes, Salmonella invA, fliC and siiE genes were investigated by quantitative real-time reverse transcription (qRT-PCR). Furthermore, to explore the effect of curcumin on the pathogenesis process in vivo, a Caenorhabditis elegans infection model was employed. No antibacterial activity was observed, even at higher concentrations of curcumin. All concentrations of curcumin caused overgrowth (35−69%) and increased the pathogenicity of the bacterial strain through the overexpression of virulence factors. The latter coincided with a significant reduction in both the lifespan and survival time of C. elegans when fed with curcumin-treated bacteria. Our data provide relevant information that may support the selective antibacterial effects of curcumin to reconsider the indiscriminate use of this phytochemical, especially in outbreaks of pathogenic Gram-negative bacteria.

3.
Pharmaceuticals (Basel) ; 13(12)2020 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-33287104

RESUMO

Giardia lamblia is a flagellated protozoan responsible for giardiasis, a worldwide diarrheal disease. The adverse effects of the pharmacological treatments and the appearance of drug resistance have increased the rate of therapeutic failures. In the search for alternative therapeutics, drug repositioning has become a popular strategy. Acetylsalicylic acid (ASA) exhibits diverse biological activities through multiple mechanisms. However, the full spectrum of its activities is incompletely understood. In this study we show that ASA displayed direct antigiardial activity and affected the adhesion and growth of trophozoites in a time-dose-dependent manner. Electron microscopy images revealed remarkable morphological alterations in the membrane, ventral disk, and caudal region. Using mass spectrometry and real-time quantitative reverse transcription (qRT-PCR), we identified that ASA induced the overexpression of heat shock protein 70 (HSP70). ASA also showed a significant increase of five ATP-binding cassette (ABC) transporters (giABC, giABCP, giMDRP, giMRPL and giMDRAP1). Additionally, we found low toxicity on Caco-2 cells. Taken together, these results suggest an important role of HSPs and ABC drug transporters in contributing to stress tolerance and protecting cells from ASA-induced stress.

4.
PeerJ ; 7: e6430, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30834181

RESUMO

BACKGROUND: The protozoan Giardia lamblia is the causal agent of giardiasis, one of the main diarrheal infections worldwide. Drug resistance to common antigiardial agents and incidence of treatment failures have increased in recent years. Therefore, the search for new molecular targets for drugs against Giardia infection is essential. In protozoa, ionic channels have roles in their life cycle, growth, and stress response. Thus, they are promising targets for drug design. The strategy of ligand-protein docking has demonstrated a great potential in the discovery of new targets and structure-based drug design studies. METHODS: In this work, we identify and characterize a new potassium channel, GiK, in the genome of Giardia lamblia. Characterization was performed in silico. Because its crystallographic structure remains unresolved, homology modeling was used to construct the three-dimensional model for the pore domain of GiK. The docking virtual screening approach was employed to determine whether GiK is a good target for potassium channel blockers. RESULTS: The GiK sequence showed 24-50% identity and 50-90% positivity with 21 different types of potassium channels. The quality assessment and validation parameters indicated the reliability of the modeled structure of GiK. We identified 110 potassium channel blockers exhibiting high affinity toward GiK. A total of 39 of these drugs bind in three specific regions. DISCUSSION: The GiK pore signature sequence is related to the small conductance calcium-activated potassium channels (SKCa). The predicted binding of 110 potassium blockers to GiK makes this protein an attractive target for biological testing to evaluate its role in the life cycle of Giardia lamblia and potential candidate for the design of novel antigiardial drugs.

5.
Acta Trop ; 172: 113-121, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28465123

RESUMO

Giardia lamblia is a worldwide protozoan responsible for a significant number of intestinal infections. There are several drugs for the treatment of giardiasis, but they often cause side effects. Curcumin, a component of turmeric, has antigiardial activity; however, the molecular target and mechanism of antiproliferative activity are not clear. The effects of curcumin on cellular microtubules have been widely investigated. Since tubulin is the most abundant protein in the cytoskeleton of Giardia, to elucidate whether curcumin has activity against the microtubules of this parasite, we treated trophozoites with curcumin and the cells were analyzed by scanning electron microscopy and confocal microscopy. Curcumin inhibited Giardia proliferation and adhesion in a time-concentration-dependent mode. The higher inhibitory concentrations of curcumin (3 and 15µM) disrupted the cytoskeletal structures of trophozoites; the damage was evident on the ventral disk, flagella and in the caudal region, also the membrane was affected. The immunofluorescence images showed altered distribution of tubulin staining on ventral disk and flagella. Additionally, we found that curcumin caused a clear reduction of tubulin expression. By docking analysis and molecular dynamics we showed that curcumin has a high probability to bind at the interface of the tubulin dimer close to the vinblastine binding site. All the data presented indicate that curcumin may inhibit Giardia proliferation by perturbing microtubules.


Assuntos
Curcumina/farmacologia , Giardia lamblia/efeitos dos fármacos , Trofozoítos/efeitos dos fármacos , Animais , Flagelos , Microscopia Eletrônica de Varredura , Microtúbulos/fisiologia , Trofozoítos/citologia , Tubulina (Proteína)/metabolismo
6.
PLoS One ; 4(9): e7156, 2009 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-19774081

RESUMO

BACKGROUND: Microfilaments play a determinant role in different cell processes such as: motility, cell division, phagocytosis and intracellular transport; however, these structures are poorly understood in the parasite Giardia lamblia. METHODOLOGY AND PRINCIPAL FINDINGS: By confocal microscopy using TRITC-phalloidin, we found structured actin distributed in the entire trophozoite, the label stand out at the ventral disc, median body, flagella and around the nuclei. During Giardia encystation, a sequence of morphological changes concurrent to modifications on the distribution of structured actin and in the expression of actin mRNA were observed. To elucidate whether actin participates actively on growth and encystation, cells were treated with Cytochalasin D, Latrunculin A and Jasplakinolide and analyzed by confocal and scanning electron microscopy. All drugs caused a growth reduction (27 to 45%) and changes on the distribution of actin. Besides, 60 to 80% of trophozoites treated with the drugs, exhibited damage at the caudal region, alterations in the flagella and wrinkles-like on the plasma membrane. The drugs also altered the cyst-yield and the morphology, scanning electron microscopy revealed diminished cytokinesis, cysts with damages in the wall and alterations in the size and on the intermembranal space. Furthermore, the drugs caused a significant reduction of the intensity of fluorescence-labeled CWP1 on ESV and on cyst wall, this was coincident with a reduction of CWP1 gene expression (34%). CONCLUSIONS AND SIGNIFICANCE: All our results, indicated an important role of actin in the morphology, growth and encystation and indirectly suggested an actin role in gene expression.


Assuntos
Actinas/fisiologia , Giardia lamblia/metabolismo , Citoesqueleto de Actina/metabolismo , Actinas/química , Animais , Compostos Bicíclicos Heterocíclicos com Pontes/química , Citocalasina D/química , Depsipeptídeos/química , Flagelos/metabolismo , Flagelos/ultraestrutura , Giardia lamblia/fisiologia , Camundongos , Camundongos Endogâmicos BALB C , Microscopia Confocal/métodos , Microscopia Eletrônica de Varredura/métodos , Modelos Biológicos , Faloidina/análogos & derivados , Faloidina/farmacologia , Ratos , Ratos Wistar , Rodaminas/farmacologia , Tiazolidinas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA