Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Lett Appl Microbiol ; 77(5)2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38769598

RESUMO

Porphyromonas gingivalis is a nonmotile, obligate anaerobic, Gram-negative bacterium known for its association with periodontal disease and its involvement in systemic diseases such as atherosclerosis, cardiovascular disease, colon cancer, and Alzheimer's disease. This bacterium produces several virulence factors, including capsules, fimbriae, lipopolysaccharides, proteolytic enzymes, and hemagglutinins. A comparative genomic analysis revealed the open pangenome of P. gingivalis and identified complete type IV secretion systems in strain KCOM2805 and almost complete type VI secretion systems in strains KCOM2798 and ATCC49417, which is a new discovery as previous studies did not find the proteins involved in secretion systems IV and VI. Conservation of some virulence factors between different strains was observed, regardless of their genetic diversity and origin. In addition, we performed for the first time a reconstruction analysis of the gene regulatory network, identifying transcription factors and proteins involved in the regulatory mechanisms of bacterial pathogenesis. In particular, QseB regulates the expression of hemagglutinin and arginine deaminase, while Rex may suppress the release of gingipain through interactions with PorV and the formatum/nitrate transporter. Our study highlights the central role of conserved virulence factors and regulatory pathways, particularly QseB and Rex, in P. gingivalis and provides insights into potential therapeutic targets.


Assuntos
Redes Reguladoras de Genes , Genoma Bacteriano , Redes e Vias Metabólicas , Porphyromonas gingivalis , Fatores de Virulência , Porphyromonas gingivalis/genética , Porphyromonas gingivalis/metabolismo , Porphyromonas gingivalis/patogenicidade , Fatores de Virulência/genética , Redes e Vias Metabólicas/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Humanos , Regulação Bacteriana da Expressão Gênica
2.
Lett Appl Microbiol ; 77(1)2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38211976

RESUMO

Acinetobacter baumannii is a relevant bacterium due to its high-resistance profile. It is well known that antimicrobial resistance is primarily linked to mutations and the acquisition of external genomic material, such as plasmids or phages, to which the Clustered Regularly Interspaced Short Palindromic Repeats associated with Cas proteins, or CRISPR-Cas, system is related. It is known that the system can influence the acquisition of foreign genetic material and play a role in various physiological pathways. In this study, we conducted an in-silico analysis using 91 fully assembled genomes of clinical strains obtained from the NCBI database. Among the analyzed genomes, the I-F1 subtype of the CRISPR-Cas system was detected showcasing variations in architecture and phylogeny. Using bioinformatic tools, we determined the presence, distribution, and specific characteristics of the CRISPR-Cas system. We found a possible association of the system with resistance genes but not with virulence determinants. Analysis of the system's components, including spacer sequences, suggests its potential role in protecting against phage infections, highlighting its protective function.


Assuntos
Acinetobacter baumannii , Bacteriófagos , Acinetobacter baumannii/genética , Sistemas CRISPR-Cas , Plasmídeos/genética , Genômica , Filogenia , Bacteriófagos/genética
3.
bioRxiv ; 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37961411

RESUMO

COPD causes significant morbidity and mortality worldwide. Epithelial damage is fundamental to disease pathogenesis, although the mechanisms driving disease remain undefined. Published evidence from a COPD cohort (SPIROMICS) and confirmed in a second cohort (COPDgene) demonstrate a polymorphism in Fucosyltransferese-2 (FUT2) is a trans-pQTL for E-cadherin, which is critical in COPD pathogenesis. We found by MALDI-TOF analysis that FUT2 increased terminal fucosylation of E-cadherin. Using atomic force microscopy, we found that FUT2-dependent fucosylation enhanced E-cadherin-E-cadherin bond strength, mediating the improvement in monolayer integrity. Tracheal epithelial cells from Fut2-/- mice have reduced epithelial integrity, which is recovered with reconstitution of Fut2. Overexpression of FUT2 in COPD derived epithelia rescues barrier function. Fut2-/- mice show increased susceptibility in an elastase model of disease developing both emphysema and fibrosis. We propose this is due to the role of FUT2 in proliferation and cell differentiation. Overexpression of FUT2 significantly increased proliferation. Loss of Fut2 results in accumulation of Spc+ cells suggesting a failure of alveolar type 2 cells to undergo transdifferentiation to alveolar type 1. Using a combination of population data, genetically manipulated mouse models, and patient-derived cells, we present a novel mechanism by which post-translational modifications modulate tissue pathology and serve as a proof of concept for the development of a disease-modifying target in COPD.

4.
Int Microbiol ; 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37646898

RESUMO

Rickettsioses have been reported in parts of Mexico since the last century, with Rocky Mountain spotted fever (RMSF) being one of the most prevalent in northern states. Unfortunately, fatality rates for RMSF in Mexico are higher than in other countries, like the USA. The reason for this difference in fatality rates is currently unknown and could be associated with a genotype of the bacterium, but no comparative molecular typing has been conducted in Mexico to date. The purpose of this study was to analyze 47 RMSF samples with different outcomes from several states in northern Mexico to know the genetic variability of Rickettsia rickettsii, as well as to reconstruct its phylogeny, for which the following intergenic regions were sequenced: RR0155-rpmB, cspA-ksgA, RR1240-tlc5, and Spo0J-abc T1, as well as the following partial genes: ompA, ompB, and gltA. We identified 8 genotypes with different distribution and prevalence among the states analyzed, as well as a different association with case outcome; these genotypes were clustered in 2 clades and 5 lineages were revealed, some of them probably exclusive from Mexico.

5.
Pathogens ; 12(5)2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37242413

RESUMO

The ESKAPE group constitute a threat to public health, since these microorganisms are associated with severe infections in hospitals and have a direct relationship with high mortality rates. The presence of these bacteria in hospitals had a direct impact on the incidence of healthcare-associated coinfections in the SARS-CoV-2 pandemic. In recent years, these pathogens have shown resistance to multiple antibiotic families. The presence of high-risk clones within this group of bacteria contributes to the spread of resistance mechanisms worldwide. In the pandemic, these pathogens were implicated in coinfections in severely ill COVID-19 patients. The aim of this review is to describe the main microorganisms of the ESKAPE group involved in coinfections in COVID-19 patients, addressing mainly antimicrobial resistance mechanisms, epidemiology, and high-risk clones.

6.
Curr Microbiol ; 79(12): 373, 2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36302918

RESUMO

Microbial biotechnology uses microorganisms and their derivatives to generate industrial and/or environmental products that impact daily life. Modern biotechnology uses proteomics, metabolomics, quantum processors, and massive sequencing methods to yield promising results with microorganisms. However, the fundamental concepts of microbial biotechnology focus on the specific search for microorganisms from natural sources and their correct analysis to implement large-scale processes. This mini-review focuses on the methods used for the isolation and selection of microorganisms with biotechnological potential to empathize the importance of these concepts in microbial biotechnology. In this work, a review of the state of the art in recent years on the selection and characterization of microorganisms with a basic approach to understanding the importance of fundamental concepts in the field of biotechnology was carried out. The proper selection of isolation sources and the design of suitable selection criteria according to the desired activity have generated substantial changes in the development of biotechnology for more than three decades. Some examples include Taq polymerase in the PCR method and CRISPR technology. The objective of this mini review is to establish general ideas for the screening of microorganisms based on basic concepts of biotechnology that are left aside in several articles and maintain the importance of the basic concepts that this implies in the development of modern biotechnology.


Assuntos
Biotecnologia , Proteômica , Biotecnologia/métodos
7.
Int J Mol Sci ; 23(12)2022 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-35743027

RESUMO

Acinetobacter baumannii is a Gram-negative bacillus that causes multiple infections that can become severe, mainly in hospitalized patients. Its high ability to persist on abiotic surfaces and to resist stressors, together with its high genomic plasticity, make it a remarkable pathogen. Currently, the isolation of strains with high antimicrobial resistance profiles has gained relevance, which complicates patient treatment and prognosis. This resistance capacity is generated by various mechanisms, including the modification of the target site where antimicrobial action is directed. This mechanism is mainly generated by genetic mutations and contributes to resistance against a wide variety of antimicrobials, such as ß-lactams, macrolides, fluoroquinolones, aminoglycosides, among others, including polymyxin resistance, which includes colistin, a rescue antimicrobial used in the treatment of multidrug-resistant strains of A. baumannii and other Gram-negative bacteria. Therefore, the aim of this review is to provide a detailed and up-to-date description of antimicrobial resistance mediated by the target site modification in A. baumannii, as well as to detail the therapeutic options available to fight infections caused by this bacterium.


Assuntos
Acinetobacter baumannii , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Colistina/farmacologia , Farmacorresistência Bacteriana Múltipla , Fluoroquinolonas/farmacologia , Humanos , Testes de Sensibilidade Microbiana , beta-Lactamas/farmacologia
8.
Int J Mol Sci ; 22(11)2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34205867

RESUMO

The increase in the use of antimicrobials such as colistin for the treatment of infectious diseases has led to the appearance of Aeromonas strains resistant to this drug. However, resistance to colistin not only occurs in the clinical area but has also been determined in Aeromonas isolates from the environment or animals, which has been determined by the detection of mcr genes that confer a resistance mechanism to colistin. The variants mcr-1, mcr-3, and mcr-5 have been detected in the genus Aeromonas in animal, environmental, and human fluids samples. In this article, an overview of the resistance to colistin in Aeromonas is shown, as well as the generalities of this molecule and the recommended methods to determine colistin resistance to be used in some of the genus Aeromonas.


Assuntos
Aeromonas/genética , Antibacterianos/química , Colistina/química , Farmacorresistência Bacteriana/genética , Aeromonas/efeitos dos fármacos , Aeromonas/patogenicidade , Antibacterianos/uso terapêutico , Proteínas de Bactérias/genética , Colistina/uso terapêutico , Humanos , Plasmídeos/efeitos dos fármacos , Plasmídeos/genética
9.
Front Microbiol ; 12: 657981, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34122373

RESUMO

Since determining the structure of the DNA double helix, the study of genes and genomes has revolutionized contemporary science; with the decoding of the human genome, new findings have been achieved, including the ability that humans have developed to modify genetic sequences in vitro. The discovery of gene modification mechanisms, such as the CRISPR-Cas system (Clustered Regularly Interspaced Short Palindromic Repeats) and Cas (CRISPR associated). Derived from the latest discoveries in genetics, the idea that science has no limits has exploded. However, improvements in genetic engineering allowed access to new possibilities to save lives or generate new treatment options for diseases that are not treatable by using genes and their modification in the genome. With this greater knowledge, the immediate question is who governs the limits of genetic science? The first answer would be the intervention of a legislative branch, with adequate scientific advice, from which the logical answer, bioethics, should result. This term was introduced for the first time by Van Rensselaer Potter, who in 1970 combined the Greek words bios and ethos, Bio-Ethik, which determined the study of the morality of human behavior in science. The approach to this term was introduced to avoid the natural tension that results from the scientific technical development and the ethics of limits. Therefore, associating the use of biotechnology through the CRISPR-Cas system and the regulation through bioethics, aims to monitor the use of techniques and technology, with benefits for humanity, without altering fundamental rights, acting with moral and ethical principles.

10.
Microbiologyopen ; 10(2): e1181, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33970546

RESUMO

Ulcerative colitis (UC) is a frequent type of inflammatory bowel disease, characterized by periods of remission and exacerbation. Gut dysbiosis may influence pathophysiology and clinical response in UC. The purpose of this study was to evaluate whether gut microbiota is related to the active and remission phases of pancolitis in patients with UC as well as in healthy participants. Fecal samples were obtained from 18 patients with UC and clinical-endoscopic evidenced pancolitis (active phase n = 9 and remission phase n = 9), as well as 15 healthy participants. After fecal DNA extraction, the 16S rRNA gene was amplified and sequenced (Illumina MiSeq), operational taxonomic units were analyzed with the QIIME software. Gut microbiota composition revealed a higher abundance of the phyla Proteobacteria and Fusobacteria in active pancolitis, as compared with remission and healthy participants. Likewise, a marked abundance of the genus Bilophila and Fusobacteria were present in active pancolitis, whereas a higher abundance of Faecalibacterium characterized both remission and healthy participants. LEfSe analysis showed that the genus Roseburia and Faecalibacterium were enriched in remission pancolitis, and genera Bilophila and Fusobacterium were enriched in active pancolitis. The relative abundance of Fecalibacterium and Roseburia showed a higher correlation with fecal calprotectin, while Bilophila and Fusobacterium showed AUCs (area under the curve) of 0.917 and 0.988 for active vs. remission pancolitis. The results of our study highlight the relation of gut dysbiosis with clinically relevant phases of pancolitis in patients with UC. Particularly, Fecalibacterium, Roseburia, Bilophila, and Fusobacterium were identified as genera highly related to the different clinical phases of pancolitis.


Assuntos
Bactérias/classificação , Colite Ulcerativa/microbiologia , Colite/microbiologia , Disbiose/microbiologia , Fezes/microbiologia , Microbioma Gastrointestinal , Adulto , Bactérias/genética , Biodiversidade , DNA Bacteriano , Feminino , Voluntários Saudáveis , Humanos , Complexo Antígeno L1 Leucocitário/análise , Masculino , RNA Ribossômico 16S , Índice de Gravidade de Doença
11.
JAMA Health Forum ; 2(7): e211529, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-35977211

RESUMO

Importance: While the COVID-19 pandemic has been associated with some substitution of telemedicine for office-based care in the US, to our knowledge, little is known regarding the pandemic's association with the clinical content of ambulatory care. Objective: To characterize changes in the clinical content of ambulatory care among office-based vs telemedicine encounters in the US before vs during the COVID-19 pandemic. Design Settings and Participants: This analysis of serial cross-sectional data from the IQVIA National Disease and Therapeutic Index was a 2-stage, stratified nationally representative audit of outpatient care in the US from January 1, 2018, through December 31, 2020. The National Disease and Therapeutic Index generates approximately 33 617 quarterly visits that are projected to 306.7 million national visits based on the survey design. Main Outcomes and Measures: (1) Prevalence of common diagnoses and (2) mix of long-term, short-term, and preventive care. Results: The mean (SD) number of projected quarterly, in-person, office-based visits was 282.1 (1.4) million in 2018 and 284.7 (10.3) in 2019 before declining to 250.8 million in quarter 1 of 2020 and 147.8 million in quarter 2 of 2020 and then increasing moderately to 181.5 million in quarter 3 of 2020 and 180.2 million in quarter 4 of 2020. The mean (SD) number of telemedicine visits was 2.8 (0.4) million in 2018 and 3.0 (0.1) million in 2019 before increasing to 8.6 million in quarter 1 of 2020 and 72.2 million in quarter 2 of 2020 and then declining notably to 43.8 million in quarter 3 of 2020 and 44.2 million in quarter 4 of 2020. Office-based care during the second through fourth quarters of 2020 involved 58.0% long-term, 23.0% short-term, and 25.6% preventive care. In contrast to office-based care, 4 of the top 10 diagnoses that were treated by telemedicine during 2020 were for psychiatric or behavioral conditions: depression, attention deficit/hyperactivity, anxiety, and bipolar disorders. Throughout this period, approximately half of office-based visits and nearly two-thirds of telemedicine visits were for established rather than new patients. Conclusions and Relevance: This cross-sectional study's findings suggest that while telemedicine rapidly increased early during course of the COVID-19 pandemic, its use declined modestly since then. In contrast to office-based care, telemedicine was more commonly used for established patients and substantially greater delivery of psychiatric or behavioral treatments rather than preventive care.


Assuntos
COVID-19 , Telemedicina , COVID-19/epidemiologia , Estudos Transversais , Atenção à Saúde , Humanos , Pandemias/prevenção & controle
12.
Front Reprod Health ; 3: 660672, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-36303986

RESUMO

The World Health Organization (WHO) and the Joint United Nations Programme on HIV and AIDS (UNAIDS) suggest that sexually transmitted infection (STI) surveillance should include other genital infections and not only human immunodeficiency virus (HIV). To monitor the concomitance of bacterial vaginosis (BV) and STIs in HIV-seropositive (HIV+) and HIV-seronegative (HIV-) patients, a prospective study was conducted in a cohort of 349 volunteers at a clinic specializing in treating STIs in Mexico City. Microbiological and molecular methods were used to detect STIs and dysbiosis in HIV+ and HIV- individuals. The prevalence of infection was higher in HIV+ (69.28%) than in HIV- (54.87%) individuals. BV was the most frequent infection in HIV+ individuals, and polymicrobial infections were 3 times more common in HIV+ individuals than in HIV- individuals (31.48 vs. 10.98%). Behaviors documented in a self-administered questionnaire included low condom use frequency in HIV+ individuals co-infected with BV or a STI. This finding highlights the importance of surveillance using routine microbiological evaluations for the correct management of genital infections in HIV+ patients because in the presence of HIV, the clinical presentations, courses, and therapeutic responses of some STIs can differ from those in patients without HIV infection.

13.
J Infect Dev Ctries ; 14(10): 1146-1154, 2020 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-33175710

RESUMO

INTRODUCTION: Intestinal and extraintestinal infections by Aeromonas spp., remain controversial, due to the existence of healthy carriers of Aeromonas spp. In children under five years old, the diarrhea of infectious origin constitutes the second cause of mortality and remains a major concern for public health. The aim of this work was to detect the pheno/genotype of ß-lactamases and class 1 integrons in Aeromonas spp., strains isolated from pediatric patients in a tertiary referral hospital in Mexico. METHODOLOGY: Sixty-six strains of Aeromonas spp., were isolated from clinical samples of pediatric origin and were identified by RFLP-PCR 16S rRNA. Resistance phenotype according to CLSI, genetic and phenotypic detection of extended-spectrum ß-lactamases (ESBL) and metallo-b-lactamases (MBL) was performed. Finally, characterization of class 1 integrons was performed. RESULTS: Aeromonas spp., strains of diarrheic origin were more predominant. A wide heterogeneity was detected, where A. caviae was the predominant specie. Second-generation cephalosporins, fluoroquinolones, and nitrofurans had best antimicrobial activity; moreover, antibiotics of the ß-lactamic and lincosamides families showed lower inhibitory activity. Phenotypically, prevalences of 4.55% and 3.03% were detected for MBL (intestinal origin) and ESBL (extraintestinal origin), respectively. blaIMIS-cphA and blaTEM-1 genes, and nineteen class 1 integrons carrying two variants of cassettes corresponding to adenylyl transferases (aadA), and dihydrofolate reductases (dfrA). Monogenic array with aadA1 cassette was predominantly. CONCLUSIONS: ESBL and class 1 integrons, in Aeromonas collected from pediatric patients, determines a major detection challenge for the clinical microbiology laboratory and represents a remarkable epidemiological risk of nosocomial spread of multidrug-resistant determinants.


Assuntos
Aeromonas/efeitos dos fármacos , Aeromonas/genética , Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Fenótipo , Adolescente , Aeromonas/enzimologia , Criança , Pré-Escolar , Diarreia/microbiologia , Infecções por Bactérias Gram-Negativas/microbiologia , Humanos , Lactente , Recém-Nascido , Integrons/genética , Testes de Sensibilidade Microbiana , RNA Ribossômico 16S/genética , Centros de Atenção Terciária/estatística & dados numéricos , beta-Lactamases/genética
14.
Comput Biol Chem ; 89: 107381, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33002715

RESUMO

Bacterial vaginosis (BV) is the principal cause of vaginal discharge among women, and it can lead to many comorbidities with a negative impact in women's daily activities. Despite the fact that the pathophysiological process of BV remains unclear, great advances had been achieved in determining consequences of the shift in the vaginal community, and it was defined that Gardnerella spp., plays a key role in the pathogenesis of BV. Interactions of vaginal phage communities and bacterial hosts may be relevant in eubiosis/dysbiosis states, so defense mechanisms in Gardnerella spp., against phage infections could be relevant in BV development. In this study, we analyzed CRISPR-Cas systems among the 13 Gardnerella species recently classified, considering that these systems act as prokaryotic immune systems against phages, plasmids, and other mobile genetic elements. In silico analyses for CRISPR-Cas systems mining over the 81 Gardnerella spp., strains genomes analyzed led to the identification of subtypes I-E and II-C. Spacers analyses showed a hypervariable region across species, providing a high resolution level in order to distinguish clonality in strains, which was supported with phylogenomic analyses based on Virtual Genomic Fingerprinting. Moreover, most of the spacers revealed interactions between Gardnerella spp., strains and prophages over the genus. Furthermore, virulence traits of the 13 species showed insights of potential niche specificity in the vaginal microbiome. Overall, our results suggest that the CRISPR-Cas systems in the genus Gardnerella may play an important role in the mechanisms of the development and maintenance of BV, considering that the Gardnerella species occupies different niches in the vaginal community; in addition, spacer sequences can be used for genotyping studies.


Assuntos
Sistemas CRISPR-Cas , Gardnerella/genética , Vaginose Bacteriana/microbiologia , Feminino , Gardnerella/química , Humanos , Filogenia , Fatores de Virulência/genética
15.
F1000Res ; 9: 1496, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-36072921

RESUMO

Background: Fecal calprotectin (FC) can be a valuable tool to optimize health care for patients with inflammatory bowel disease (IBD). The objective of this observational study was to determine the level of knowledge of the FC test in Mexican patients with IBD. Methods: A self-report questionnaire was distributed via Facebook to patients with IBD. The survey consisted of 15 questions in two categories: the first category assessed knowledge of IBD diagnosis, and the second category assessed knowledge of the FC test. Results: In total, 460 patients with IBD participated, of which 83.9% (386) had ulcerative colitis (UC) and 16.0% (74) had Crohn's disease (CD). Regarding IBD diagnosis, 41.9% of participants stated that they did not know of a non-invasive test for fecal matter to identify inflammation of the colon. Regarding the FC test, 57.5% (UC) and 58.1% (CD) stated that they did not know about the test. Additionally, 65.8% (UC) and 51.3% (CD) of participants stated that they had never received the FC test and 82.6% (UC) and 77.0% (CD) recognized that the FC test was difficult to access in their medical practice. Furthermore, 66% (UC) and 52.7% (CD) of participants noted that their specialist doctor had never suggested the FC test to them, yet 89.1% (UC) and 87.8% (CD) stated that they would prefer FC analysis for their IBD follow-up assessments. Conclusions: There is little knowledge of the FC biomarker among Mexican patients with IBD. This suggests the need for greater dissemination of its use and scope as a biomarker in IBD.

17.
Microorganisms ; 7(9)2019 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-31540466

RESUMO

The evolution of multidrug resistant bacteria to the most diverse antimicrobials known so far pose a serious problem to global public health. Currently, microorganisms that develop resistant phenotypes to multiple drugs are associated with high morbidity and mortality. This resistance is encoded by a group of genes termed 'bacterial resistome', divided in intrinsic and extrinsic resistome. The first one refers to the resistance displayed on an organism without previous exposure to an antibiotic not involving horizontal genetic transfer, and it can be acquired via mutations. The latter, on the contrary, is acquired exclusively via horizontal genetic transfer involving mobile genetic elements that constitute the 'bacterial mobilome'. This transfer is mediated by three different mechanisms: transduction, transformation, and conjugation. Recently, a problem of public health due to implications in the emergence of multi-drug resistance in Aeromonas spp. strains in water environments has been described. This is derived from the genetic material transfer via conjugation events. This is important, since bacteria that have acquired antibiotic resistance in natural environments can cause infections derived from their ingestion or direct contact with open wounds or mucosal tissue, which in turn, by their resistant nature, makes their eradication complex. Implications of the emergence of resistance in Aeromonas spp. by horizontal gene transfer on public health are discussed.

18.
Traffic ; 18(7): 425-432, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28421662

RESUMO

Gram-negative bacteria have mechanisms through which they can colonize and survive in different environments, such as the secretion systems types (1-6) that have been widely studied and characterized. Nowadays, some authors have proposed extracellular structures, such as the outer membrane vesicles (OMVs), to be considered as an additional and independent secretion system. The OMVs are spherical particles of 50-250 nm in diameter; they originate in the outer membrane, and therefore they have a very similar composition to the latter. These particles can transport an important variety of biomolecules: enzymes, toxins, antigenic determinants and even nucleic acids. Thus, it is of great interest to collect data describing the advantages of the transport of biomolecules through the OMVs and, thus, determine their role as a potential secretion system.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Membrana Celular/metabolismo , Bactérias Gram-Negativas/fisiologia , Vesículas Transportadoras/metabolismo , Fatores de Virulência/metabolismo , Proteínas da Membrana Bacteriana Externa/biossíntese , Bactérias Gram-Negativas/metabolismo , Bactérias Gram-Negativas/patogenicidade , Transporte Proteico , Virulência , Fatores de Virulência/biossíntese
19.
Front Microbiol ; 7: 1522, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27725813

RESUMO

Shiga-like toxins (Stx) represent a group of bacterial toxins involved in human and animal diseases. Stx is produced by enterohemorrhagic Escherichia coli, Shigella dysenteriae type 1, Citrobacter freundii, and Aeromonas spp.; Stx is an important cause of bloody diarrhea and hemolytic uremic syndrome (HUS). The aim of this study was to identify the stx1/stx2 genes in clinical strains and outer membrane vesicles (OMVs) of Aeromonas spp., 66 strains were isolated from children who live in Mexico City, and Stx effects were evaluated in Vero cell cultures. The capacity to express active Stx1 and Stx2 toxins was determined in Vero cell cultures and the concentration of Stx was evaluated by 50% lethal dose (LD50) assays, observing inhibition of damaged cells by specific monoclonal antibodies. The results obtained in this study support the hypothesis that the stx gene is another putative virulence factor of Aeromonas, and since this gene can be transferred horizontally through OMVs this genus should be included as a possible causal agents of gastroenteritis and it should be reported as part of standard health surveillance procedures. Furthermore, these results indicate that the Aeromonas genus might be a potential causative agent of HUS.

20.
Mol Cancer ; 6: 9, 2007 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-17233922

RESUMO

BACKGROUND: Sapphyrin analogues and related porphyrin-like species have attracted attention as anticancer agents due to their selective localization in various cancers, including hematologic malignancies, relative to surrounding tissues. Sapphyrins are electron affinic compounds that generate high yields of singlet oxygen formation. Although initially explored in the context of photodynamic therapy, sapphyrins have intrinsic anticancer activity that is independent of their photosensitizing properties. However, the mechanisms for their anticancer activity have not been fully elucidated. RESULTS: We have prepared a series of hydrophilic sapphyrins and evaluated their effect on proliferation, uptake, and cell death in adherent human lung (A549) and prostate (PC3) cancer cell lines and in an A549 xenograft tumor model. PCI-2050, the sapphyrin derivative with the highest in vitro growth inhibitory activity, significantly lowered 5-bromo-2'-deoxyuridine incorporation in S-phase A549 cells by 60% within eight hours and increased levels of reactive oxygen species within four hours. The growth inhibition pattern of PCI-2050 in the National Cancer Institute 60 cell line screen correlated most closely using the COMPARE algorithm with known transcriptional or translational inhibitors. Gene expression analyses conducted on A549 plateau phase cultures treated with PCI-2050 uncovered wide-spread decreases in mRNA levels, which especially affected short-lived transcripts. Intriguingly, PCI-2050 increased the levels of transcripts involved in RNA processing and trafficking, transcriptional regulation, and chromatin remodeling. We propose that these changes reflect the activation of cellular processes aimed at countering the observed wide-spread reductions in transcript levels. In our A549 xenograft model, the two lead compounds, PCI-2050 and PCI-2022, showed similar tumor distributions despite differences in plasma and kidney level profiles. This provides a possible explanation for the better tolerance of PCI-2022 relative to PCI-2050. CONCLUSION: Hydrophilic sapphyrins were found to display promise as novel agents that localize to tumors, generate oxidative stress, and inhibit gene expression.


Assuntos
Interações Hidrofóbicas e Hidrofílicas , Análise de Sequência com Séries de Oligonucleotídeos , Porfirinas/farmacocinética , Porfirinas/toxicidade , Linhagem Celular Tumoral , Proliferação de Células , Análise por Conglomerados , Perfilação da Expressão Gênica , Humanos , Estrutura Molecular , Espécies Reativas de Oxigênio/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA