RESUMO
Schwann cells (SCs) play a key role in peripheral nerve regeneration. After damage, they respond acquiring a repair phenotype that allows them to proliferate, migrate and redirect axonal growth. Previous studies have shown that Uridine-5'-Triphosphate (UTP) and its purinergic receptors participate in several pathophysiological responses in the nervous system. Our group has previously described how UTP induces the migration of a Schwannoma cell line and promotes wound healing. These data suggest that UTP participates in the signaling involved in the regeneration process. In the present study we evaluated UTP effects in isolated rat SCs and cocultures of SCs and dorsal root ganglia neurons. UTP reduced cAMP-dependent Krox-20 induction in SCs. UTP also reduced the N-cadherin re-expression that occurs when SCs and axons make contact. In myelinating cocultures, a non-significant tendency to a lower expression of P0 and MAG proteins in presence of UTP was observed. We also demonstrated that UTP induced SC migration without affecting cell proliferation. Interestingly, UTP was found to block neuregulin-induced phosphorylation of the ErbB3 receptor, a pathway involved in the regeneration process. These results indicate that UTP could acts as a brake to the differentiation signals, promoting a more migratory state in the repair-SCs.
Assuntos
Fármacos do Sistema Nervoso Periférico/farmacologia , Células de Schwann/efeitos dos fármacos , Uridina Trifosfato/farmacologia , Animais , Axônios/metabolismo , Caderinas/metabolismo , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Técnicas de Cocultura , AMP Cíclico/metabolismo , Proteína 2 de Resposta de Crescimento Precoce/metabolismo , Gânglios Espinais/metabolismo , Fosforilação/efeitos dos fármacos , Ratos Sprague-Dawley , Receptor ErbB-3/metabolismo , Células de Schwann/metabolismo , Regulação para Cima/efeitos dos fármacosRESUMO
Schwann cell migration is essential during the regenerative response to nerve injury, however, the factors that regulate this phenomenon are not yet clear. Here we describe that retinoic acid (RA), whose production and signaling activity are greatly enhanced during nerve regeneration, increases Schwann cell migration. This is accompanied by the up-regulation of NEDD9, a member of the CAS family of scaffold proteins previously implicated in migratory and invasive behavior in gliomas, melanomas and the neural crest cells from which Schwann cells derive. This RA-induced NEDD9 accumulation is due to augmented mRNA levels, as well as an increase of NEDD9 protein stability. Although all NEDD9 phospho-isoforms present in Schwann cells are induced by the retinoid, the hormone also changes its phosphorylation status, thus altering the ratio between the different isoforms. Silencing NEDD9 in Schwann cells had no effect on basal migratory ability, but completely abrogated RA-induced enhanced migration. Collectively, our results indicate that RA could be a major regulator of Schwann cell migration after nerve injury, thus offering a new insight into peripheral nerve repair.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Movimento Celular/efeitos dos fármacos , Regeneração Nervosa/efeitos dos fármacos , Processamento de Proteína Pós-Traducional , Células de Schwann/efeitos dos fármacos , Transcrição Gênica , Ativação Transcricional , Tretinoína/farmacologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Células Cultivadas , Proteínas do Citoesqueleto , Relação Dose-Resposta a Droga , Proteínas com Domínio LIM , Proteínas dos Microfilamentos , Oxigenases de Função Mista , Fosforilação , Estabilidade Proteica , Interferência de RNA , RNA Mensageiro/metabolismo , Ratos , Células de Schwann/metabolismo , Transdução de Sinais , Fatores de Tempo , Transfecção , Regulação para CimaRESUMO
BACKGROUND: Schwann cells (SCs) are the cell type responsible for the formation of the myelin sheath in the peripheral nervous system (PNS). As retinoic acid (RA) and other retinoids have a profound effect as regulators of the myelination program, we sought to investigate how their nuclear receptors levels were regulated in this cell type. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, by using Schwann cells primary cultures from neonatal Wistar rat pups, as well as myelinating cocultures of Schwann cells with embryonic rat dorsal root ganglion sensory neurons, we have found that sustained expression of RXR-γ depends on the continuous presence of a labile activator, while axonal contact mimickers produced an increase in RXR-γ mRNA and protein levels, increment that could be prevented by RA. The upregulation by axonal contact mimickers and the transcriptional downregulation by RA were dependent on de novo protein synthesis and did not involve changes in mRNA stability. On the other hand, RAR-ß mRNA levels were only slightly modulated by axonal contact mimickers, while RA produced a strong transcriptional upregulation that was independent of de novo protein synthesis without changes in mRNA stability. CONCLUSIONS/SIGNIFICANCE: All together, our results show that retinoid receptors are regulated in a complex manner in Schwann cells, suggesting that they could have a prominent role as regulators of Schwann cell physiology.
Assuntos
Comunicação Celular/fisiologia , Terminações Pré-Sinápticas/fisiologia , Receptores do Ácido Retinoico/genética , Células de Schwann , Tretinoína/farmacologia , Animais , Animais Recém-Nascidos , Comunicação Celular/efeitos dos fármacos , Comunicação Celular/genética , Células Cultivadas , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Terminações Pré-Sinápticas/metabolismo , Ratos , Ratos Wistar , Receptores do Ácido Retinoico/metabolismo , Receptor X Retinoide gama/genética , Receptor X Retinoide gama/metabolismo , Células de Schwann/efeitos dos fármacos , Células de Schwann/metabolismo , Células de Schwann/fisiologia , Tretinoína/metabolismoRESUMO
Understanding the mechanisms that control myelin formation is essential for the development of demyelinating diseases treatments. All-trans-retinoic acid (RA) plays an essential role during the development of the nervous system as a potent regulator of morphogenesis, cell growth, and differentiation. In this study, we show that RA is also a potent inhibitor of peripheral nervous system (PNS) myelination. RA acts through its binding to RA receptors (RAR) and retinoid X receptors (RXR), two members of the superfamily of nuclear receptors that act as ligand-dependent transcription factors. Schwann cells (SCs) express all retinoid receptors during the relevant stages of myelin formation. Through the activation of RXR, RA produces an upregulation of Krox20, a SC-specific regulatory transcription factor that plays a central role during myelination. Krox20 upregulation translates into Mbp and Mpz overexpression, therefore blocking myelin formation. This increase in myelin protein expression is accompanied by the induction of an adaptive ER stress response. At the same time, through a RAR-dependent mechanism, RA downregulates myelin-associated glycoprotein, which also contributes to the dysmyelinating effect of the retinoid.
Assuntos
Antineoplásicos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Bainha de Mielina/metabolismo , Células de Schwann/efeitos dos fármacos , Nervo Isquiático/citologia , Tretinoína/farmacologia , Fatores Etários , Animais , Animais Recém-Nascidos , Antineoplásicos/metabolismo , Compostos Azo , Benzoatos/farmacologia , Células Cultivadas , Técnicas de Cocultura , Proteína 2 de Resposta de Crescimento Precoce/genética , Proteína 2 de Resposta de Crescimento Precoce/metabolismo , Embrião de Mamíferos , Gânglios Espinais/citologia , Regulação da Expressão Gênica/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Proteínas da Mielina/genética , Proteínas da Mielina/metabolismo , Bainha de Mielina/genética , Naftalenos , Proteínas de Neurofilamentos/metabolismo , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Ácidos Nicotínicos/farmacologia , Oligopeptídeos/metabolismo , Ligação Proteica/efeitos dos fármacos , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Receptores do Ácido Retinoico/antagonistas & inibidores , Receptores do Ácido Retinoico/metabolismo , Receptores X de Retinoides/antagonistas & inibidores , Receptores X de Retinoides/metabolismo , Retinoides/farmacologia , Nervo Isquiático/crescimento & desenvolvimento , Tetra-Hidronaftalenos/farmacologia , Fator de Transcrição CHOP/metabolismo , Tretinoína/metabolismoRESUMO
Retinoic acid (RA) is a potent regulator of neuronal cell differentiation. RA normally activates gene expression by binding to nuclear receptors that interact with response elements (RAREs) in regulatory regions of target genes. We show here that in PC12 cell subclones in which the retinoid causes neurite extension, RA induces a rapid and sustained phosphorylation of CREB (cyclic AMP response element binding protein), compatible with a nongenomic effect. RA also causes a rapid increase of CREB phosphorylation in primary cultures of cerebrocortical cells and of dorsal root ganglia neurons from rat embryos. RA-mediated phosphorylation of CREB leads to a direct stimulation of CREB-dependent transcriptional activity and to activation of the expression of genes such as c-fos, which do not contain RAREs but contain cAMP response elements (CREs) in their promoters. CREB is a major target of extracellular signal regulated kinase ERK1/2 signaling in neuronal cells, and we demonstrate here that RA induces an early stimulation of ERK1/2, which is required both for CREB phosphorylation and transcriptional activity. These results demonstrate that RA, by a nongenomic mechanism, stimulates signaling pathways that lead to phosphorylation of transcription factors, which in turn activate the transcription of genes involved in neuronal differentiation.