Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Regul Toxicol Pharmacol ; 149: 105623, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38631606

RESUMO

The Bone-Marrow derived Dendritic Cell (BMDC) test is a promising assay for identifying sensitizing chemicals based on the 3Rs (Replace, Reduce, Refine) principle. This study expanded the BMDC benchmarking to various in vitro, in chemico, and in silico assays targeting different key events (KE) in the skin sensitization pathway, using common substances datasets. Additionally, a Quantitative Structure-Activity Relationship (QSAR) model was developed to predict the BMDC test outcomes for sensitizing or non-sensitizing chemicals. The modeling workflow involved ISIDA (In Silico Design and Data Analysis) molecular fragment descriptors and the SVM (Support Vector Machine) machine-learning method. The BMDC model's performance was at least comparable to that of all ECVAM-validated models regardless of the KE considered. Compared with other tests targeting KE3, related to dendritic cell activation, BMDC assay was shown to have higher balanced accuracy and sensitivity concerning both the Local Lymph Node Assay (LLNA) and human labels, providing additional evidence for its reliability. The consensus QSAR model exhibits promising results, correlating well with observed sensitization potential. Integrated into a publicly available web service, the BMDC-based QSAR model may serve as a cost-effective and rapid alternative to lab experiments, providing preliminary screening for sensitization potential, compound prioritization, optimization and risk assessment.


Assuntos
Benchmarking , Células Dendríticas , Relação Quantitativa Estrutura-Atividade , Células Dendríticas/efeitos dos fármacos , Humanos , Animais , Máquina de Vetores de Suporte , Simulação por Computador , Dermatite Alérgica de Contato , Alérgenos/toxicidade , Alternativas aos Testes com Animais/métodos , Células da Medula Óssea/efeitos dos fármacos , Ensaio Local de Linfonodo , Camundongos
2.
Nanotoxicology ; 18(2): 214-228, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38557361

RESUMO

Carbon nanotubes (CNTs) are increasingly being used in industrial applications, but their toxicological data in animals and humans are still sparse. To assess the toxicological dose-response of CNTs and to evaluate their pulmonary biopersistence, their quantification in tissues, especially lungs, is crucial. There are currently no reference methods or reference materials for low levels of CNTs in organic matter. Among existing analytical methods, few have been fully and properly validated. To remedy this, we undertook an inter-laboratory comparison on samples of freeze-dried pig lung, ground and doped with CNTs. Eight laboratories were enrolled to analyze 3 types of CNTs at 2 concentration levels each in this organic matrix. Associated with the different analysis techniques used (specific to each laboratory), sample preparation may or may not have involved prior digestion of the matrix, depending on the analysis technique and the material being analyzed. Overall, even challenging, laboratories' ability to quantify CNT levels in organic matter is demonstrated. However, CNT quantification is often overestimated. Trueness analysis identified effective methods, but systematic errors persisted for some. Choosing the assigned value proved complex. Indirect analysis methods, despite added steps, outperform direct methods. The study emphasizes the need for reference materials, enhanced precision, and organized comparisons.


Assuntos
Pulmão , Nanotubos de Carbono , Nanotubos de Carbono/química , Nanotubos de Carbono/toxicidade , Animais , Suínos , Pulmão/química , Pulmão/efeitos dos fármacos , Laboratórios/normas , Compostos Orgânicos/análise , Compostos Orgânicos/química
3.
Sci Data ; 11(1): 224, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383523

RESUMO

The cutaneous absorption parameters of xenobiotics are crucial for the development of drugs and cosmetics, as well as for assessing environmental and occupational chemical risks. Despite the great variability in the design of experimental conditions due to uncertain international guidelines, datasets like HuskinDB have been created to report skin absorption endpoints. This review updates available skin permeability data by rigorously compiling research published between 2012 and 2021. Inclusion and exclusion criteria have been selected to build the most harmonized and reusable dataset possible. The Generative Topographic Mapping method was applied to the present dataset and compared to HuskinDB to monitor the progress in skin permeability research and locate chemotypes of particular concern. The open-source dataset (SkinPiX) includes steady-state flux, maximum flux, lag time and permeability coefficient results for the substances tested, as well as relevant information on experimental parameters that can impact the data. It can be used to extract subsets of data for comparisons and to build predictive models.


Assuntos
Absorção Cutânea , Pele , Xenobióticos , Permeabilidade , Pele/metabolismo , Xenobióticos/metabolismo , Conjuntos de Dados como Assunto , Humanos
4.
Int J Mol Sci ; 24(13)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37446067

RESUMO

Nanoparticles are extensively used in industrial products or as food additives. However, despite their contribution to improving our quality of life, concerns have been raised regarding their potential impact on occupational and public health. To speed up research assessing nanoparticle-related hazards, this study was undertaken to identify early markers of harmful effects on the lungs. Female Sprague Dawley rats were either exposed to crystalline silica DQ-12 with instillation, or to titanium dioxide P25, carbon black Printex-90, or multi-walled carbon nanotube Mitsui-7 with nose-only inhalation. Tissues were collected at three post-exposure time points to assess short- and long-term effects. All particles induced lung inflammation. Histopathological and biochemical analyses revealed phospholipid accumulation, lipoproteinosis, and interstitial thickening with collagen deposition after exposure to DQ-12. Exposure to the highest dose of Printex-90 and Mitsui-7, but not P25, induced some phospholipid accumulation. Comparable histopathological changes were observed following exposure to P25, Printex-90, and Mitsui-7. Comparison of overall gene expression profiles identified 15 potential early markers of adverse lung outcomes induced by spherical particles. With Mitsui-7, a distinct gene expression signature was observed, suggesting that carbon nanotubes trigger different toxicity mechanisms to spherical particles.


Assuntos
Nanotubos de Carbono , Ratos , Feminino , Animais , Nanotubos de Carbono/toxicidade , Qualidade de Vida , Ratos Sprague-Dawley , Pulmão/patologia , Dióxido de Silício/farmacologia , Exposição por Inalação/efeitos adversos , Líquido da Lavagem Broncoalveolar/química
5.
Nanotoxicology ; 17(3): 270-288, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37126100

RESUMO

Carbon nanotubes (CNTs) are nanomaterials presenting an occupational inhalation risk during production or handling. The International Agency for Research on Cancer classified one CNT, Mitsui-7 (MWNT-7), as 'possibly carcinogenic to humans'. In recognition of their similarities, a proposal has been submitted to the risk assessment committee of ECHA to classify all fibers with 'Fibre Paradigm' (FP)-compatible dimensions as carcinogenic. However, there is a lack of clarity surrounding the toxicity of fibers that do not fit the FP criteria. In this study, we compared the effects of the FP-compatible Mitsui-7, to those of NM-403, a CNT that is too short and thin to fit the paradigm. Female Sprague Dawley rats deficient for p53 (GMO) and wild type (WT) rats were exposed to the two CNTs (0.25 mg/rat/week) by intratracheal instillation. Animals (GMO and WT) were exposed weekly for four consecutive weeks and were sacrificed 3 days or 8 months after the last instillation. Exposure to both CNTs induced acute lung inflammation. However, persistent inflammation at 8 months was only observed in the lungs of rats exposed to NM-403. In addition to the persistent inflammation, NM-403 stimulated hyperplasic changes in rat lungs, and no adenomas or carcinomas were detected. The degree and extent of hyperplasia was significantly more pronounced in GMO rats. These results suggest that CNT not meeting the FP criteria can cause persistent inflammation and hyperplasia. Consequently, their health effects should be carefully assessed.


Assuntos
Nanotubos de Carbono , Animais , Feminino , Ratos , Hiperplasia/patologia , Inflamação , Exposição por Inalação , Pulmão , Nanotubos de Carbono/toxicidade , Ratos Sprague-Dawley , Proteína Supressora de Tumor p53/genética
6.
Crit Rev Toxicol ; 52(4): 294-316, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-36125048

RESUMO

Percutaneous occupational exposure to industrial toxicants can be assessed in vitro on excised human or animal skins. Numerous factors can significantly influence skin permeation of chemicals and the flux determination. Among them, the vehicle used to solubilize the solid substances is a tricky key step. A "realistic surrogate" that closely matches the exposure scenario is recommended in first intention. When direct transposition of occupational exposure conditions to in vitro experiments is impossible, it is recommended that the vehicle used does not affect the skin barrier (in particular in terms of structural integrity, composition, or enzymatic activity). Indeed, any such effect could alter the percutaneous absorption of substances in a number of ways, as we will see. Potential effects are described for five monophasic vehicles, including the three most frequently used: water, ethanol, acetone; and two that are more rarely used, but are realistic: artificial sebum and artificial sweat. Finally, we discuss a number of criteria to be verified and the associated tests that should be performed when choosing the most appropriate vehicle, keeping in mind that, in the context of occupational exposure, the scientific quality of the percutaneous absorption data provided, and how they are interpreted, may have long-range consequences. From the narrative review presented, we also identify and discuss important factors to consider in future updates of the OECD guidelines for in vitro skin absorption experiments.


Assuntos
Exposição Ocupacional , Absorção Cutânea , Acetona/metabolismo , Animais , Etanol , Humanos , Pele , Água/metabolismo
7.
Part Fibre Toxicol ; 18(1): 29, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34353337

RESUMO

BACKGROUND: An important aspect of nanomaterial (NM) risk assessment is establishing relationships between physicochemical properties and key events governing the toxicological pathway leading to adverse outcomes. The difficulty of NM grouping can be simplified if the most toxicologically relevant dose metric is used to assess the toxicological dose-response. Here, we thoroughly investigated the relationship between acute and chronic inflammation (based on polymorphonuclear neutrophil influx (% PMN) in lung bronchoalveolar lavage) and the retained surface area in the lung. Inhalation studies were performed in rats with three classes of NMs: titanium dioxides (TiO2) and carbon blacks (CB) as poorly soluble particles of low toxicity (PSLT), and multiwall carbon nanotubes (MWCNTs). We compared our results to published data from nearly 30 rigorously selected articles. RESULTS: This analysis combined data specially generated for this work on three benchmark materials - TiO2 P25, the CB Printex-90 and the MWCNT MWNT-7 - following subacute (4-week) inhalation with published data relating to acute (1-week) to subchronic (13-week) inhalation exposure to the classes of NMs considered. Short and long post-exposure recovery times (immediately after exposure up to more than 6 months) allowed us to examine both acute and chronic inflammation. A dose-response relationship across short-term and long-term studies was revealed linking pulmonary retained surface area dose (measured or estimated) and % PMN. This relationship takes the form of sigmoid curves, and is independent of the post-exposure time. Curve fitting equations depended on the class of NM considered, and sometimes on the duration of exposure. Based on retained surface area, long and thick MWCNTs (few hundred nm long with an aspect ratio greater than 25) had a higher inflammatory potency with 5 cm2/g lung sufficient to trigger an inflammatory response (at 6% PMN), whereas retained surfaces greater than 150 cm2/g lung were required for PSLT. CONCLUSIONS: Retained surface area is a useful metric for hazard grouping purposes. This metric would apply to both micrometric and nanometric materials, and could obviate the need for direct measurement in the lung. Indeed, it could alternatively be estimated from dosimetry models using the aerosol parameters (rigorously determined following a well-defined aerosol characterization strategy).


Assuntos
Nanoestruturas , Nanotubos de Carbono , Administração por Inalação , Animais , Líquido da Lavagem Broncoalveolar , Relação Dose-Resposta a Droga , Inflamação/induzido quimicamente , Exposição por Inalação/efeitos adversos , Pulmão , Nanoestruturas/toxicidade , Nanotubos de Carbono/toxicidade , Tamanho da Partícula , Ratos
8.
Nanomaterials (Basel) ; 11(6)2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34206090

RESUMO

Although aging is associated with a higher risk of developing respiratory pathologies, very few studies have assessed the impact of age on the adverse effects of inhaled nanoparticles. Using conventional and transcriptomic approaches, this study aimed to compare in young (12-13-week-old) and elderly (19-month-old) fisher F344 rats the pulmonary toxicity of an inhaled nanostructured aerosol of titanium dioxide (TiO2). Animals were nose-only exposed to this aerosol at a concentration of 10 mg/m3 for 6 h per day, 5 days per week for 4 weeks. Tissues were collected immediately (D0), and 28 days after exposure (D28). A pulmonary influx of neutrophilic granulocytes was observed in exposed rats at D0, but diminished with time while remaining significant until D28. Similarly, an increased expression of several genes involved in inflammation at the two post-exposure time-points was seen. Apart from an age-specific pulmonary influx of lymphocyte, only slight differences in physio-pathological responses following TiO2 exposure between young and elderly animals were noticed. Conversely, marked age-related differences in gene expression profiles were observed making possible to establish lists of genes specific to each age group and post-exposure times. These results highlight different signaling pathways that were disrupted in rats according to their age.

9.
Nanotoxicology ; 15(2): 238-256, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33332178

RESUMO

Inhalation of multi-walled carbon nanotubes (MWCNTs) induces lung inflammation. Depending on industrial applications, CNTs with different physicochemical characteristics are produced and workers can potentially be exposed. This raises concerns about the long-term health effects of these nanomaterials. Because of the wide variety of MWCNTs, it is essential to study the toxicological effects of CNTs of various shapes and to better understand the impact physical and chemical properties have on their toxicity. In this study, rats were exposed by nose-only to two pristine MWCNTs with different morphologies: the long and thick NM-401 or the short and thin NM-403. After four weeks of inhalation, animals were euthanized at four different times during the recovery period: three days (short-term), 30 and 90 days (intermediate-term) and 180 days (long-term). Analyses of the transcriptome in the whole lung and the proteome in the bronchoalveolar lavage fluid of exposed animals were performed to understand the MWCNT underlying mechanisms of toxicity. Following inhalation of NM-401, we observed a dose-dependent increase in the number of differentially expressed genes and proteins, whereas there is no clear difference between the two concentrations of NM-403. After NM-403 inhalation, the number of differentially expressed genes and proteins varied less between the four post-exposure times compared to NM-401, which supports the postulation of a persistent effect of this type of CNT. Our toxicogenomics approaches give insights into the different toxicological profile following MWCNT exposure.


Assuntos
Exposição por Inalação/efeitos adversos , Pulmão/efeitos dos fármacos , Nanotubos de Carbono/toxicidade , Pneumonia/induzido quimicamente , Proteoma/metabolismo , Transcriptoma/efeitos dos fármacos , Administração por Inalação , Animais , Líquido da Lavagem Broncoalveolar/química , Feminino , Nanotubos de Carbono/química , Pneumonia/metabolismo , Ratos , Ratos Sprague-Dawley , Propriedades de Superfície , Toxicogenética
10.
Nanotoxicology ; 14(9): 1227-1240, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32909484

RESUMO

Despite their numerous possible applications, the potential impact of carbon engineered nanomaterials (CEN) on human health, especially after inhalation exposure, is still questioned. Quantification of CEN in the respiratory system is a recurring issue and deposition and pulmonary biopersistence data are essential for toxicological evaluation. In this context, a fully validated standard method for CEN quantification in lung tissue is therefore imperative. The present method, based on the National Institute for Occupational Safety and Health 5040 method for atmospheric elemental and organic carbon analysis as well as on previous developments on biological matrices, involves a simple thermogravimetric analysis (TGA) of lyophilized samples, possibly preceded by a step of chemical digestion of the tissues depending on the nature of CEN investigated. The analytical method was validated for 4 CEN (carbon black as well as 3 long and thick or short and thin carbon nanotubes) for selectivity, linearity, detection and quantification limits, bias, and within-batch and between-batch precision. Calibration curves show linearity in the range of 1-40 mg/g lyophilized lung. Limits of detection for the different CEN range from 6 to 18 µg in 20 mg dry test sample. On average, within-batch precision was kept below 20 and 10% for analysis with or without a prior digestion step, respectively, whereas the corresponding between-batch precision levels reached almost 20 and 15%, respectively. The method was successfully applied to toxicological investigations for the quantitative analysis of CEN contents in rat lung exposed by inhalation.


Assuntos
Exposição por Inalação/análise , Pulmão/química , Nanotubos de Carbono/análise , Fuligem/análise , Aerossóis , Animais , Relação Dose-Resposta a Droga , Feminino , Humanos , Nanotubos de Carbono/química , Ratos , Ratos Sprague-Dawley , Fuligem/química , Propriedades de Superfície
11.
J Occup Med Toxicol ; 15: 9, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32426022

RESUMO

BACKGROUND: Carbon disulfide (CS2) exacerbates the effect of noise on hearing, and disrupts the vestibular system. The goal of this study was to determine whether these effects are also observed with intermittent CS2 exposure. METHODS: Rats were exposed for 4 weeks (5 days/week, 6 h/day) to a band noise at 106 dB SPL either alone or combined with continuous (63 ppm or 250 ppm) or intermittent (15 min/h or 2 × 15 min/h at 250 ppm) CS2. Hearing function was assessed by measuring distortion product otoacoustic emissions (DPOAEs); balance was monitored based on the vestibulo-ocular reflex (VOR). Functional measurements were performed before, at the end of exposure and 4 weeks later. Histological analyses of the inner ear were also performed following exposure and after the 4-week recovery period. RESULTS: The results obtained here confirmed that CS2 exposure exerts two differential temporary effects on hearing: (1) it attenuates the noise-induced DPOAE decrease below 6 kHz probably through action on the middle ear reflex when exposure lasts 15 min per hour, and (2) continuous exposure to 250 ppm for 6 h extends the frequency range affected by noise up to 9.6 kHz (instead of 6 kHz with noise alone). With regard to balance, the VOR was reversibly disrupted at the two highest doses of CS2 (2 × 15 min/h and continuous 250 ppm). No morphological alterations to the inner ear were observed. CONCLUSION: These results reveal that short periods of CS2 exposure can alter the sensitivity of the cochlea to noise at a dose equivalent to only 10 times the short-term occupational limit value, and intermittent exposure to CS2 (2 × 15 min/h) can alter the function of the vestibular system.

12.
Chemosphere ; 252: 126525, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32220717

RESUMO

Bisphenol A (BPA) is widely used in industrial products. Due to the toxicity of this compound, and to comply with restrictions and regulations, manufacturers have progressively replaced it by substitutes. One of the main substitutes used is bisphenol S (BPS). Despite increasing use in many products, the effects of BPS on human health have been little investigated, and studies on percutaneous BPS absorption and particularly toxicokinetic data are lacking. However, the endocrine-disrupting activity of BPA and BPS appears comparable. Dermal contact is a significant source of occupational exposure and is the main route during handling of bisphenol-containing receipts by cashiers. Here, percutaneous BPS absorption was investigated and compared to that of BPA. Experiments were performed according to OECD guidelines. Test compounds dissolved in a vehicle - acetone, artificial sebum or water - were applied in vitro to fresh human skin samples in static Franz diffusion cells. Flux, cumulative absorbed dose and distribution of dose recovered were measured. BPA absorption was vehicle-dependent ranging from 3% with sebum to 41% with water. BPS absorption was much lower than BPA absorption whatever the vehicle tested (less than 1% of applied dose). However, depending on the vehicle 20% to 47% of the applied BPS dose remained in the skin, and was consequently potentially absorbable. Both BPA and BPS were mainly absorbed without biotransformation. Taken together, these results indicate that workers may be exposed to BPS through skin when handling products containing it. This exposure is of concern as its toxicity is currently incompletely understood.


Assuntos
Compostos Benzidrílicos/metabolismo , Fenóis/metabolismo , Absorção Cutânea/fisiologia , Pele/metabolismo , Sulfonas/metabolismo , Administração Cutânea , Biotransformação , Humanos , Exposição Ocupacional/análise , Papel
13.
J Proteomics ; 207: 103451, 2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-31323425

RESUMO

The pulmonary toxicological properties of inhaled titanium dioxide were studied using bronchoalveolar lavage fluid (BALF) cytology and proteomics analyses. Fischer 344 rats were exposed to 10 mg/m3 of TiO2 nanostructured aerosol by nose-only inhalation for 6 h/day, 5 days/week for 4 weeks. Lung samples were collected up to 180 post-exposure days. As previously described, cytological analyses of BALF showed a strong inflammatory response up to 3 post-exposure days, which persisted however, at a lower intensity up to 180 days. In addition, using Multidimensional Protein Identification Technology (MudPIT), we identified a total of 107, 50 and 45 proteins (UniprotKB identifiers) differentially expressed in exposed rats immediately, 3 and 180 days after the end of exposure respectively. Increased levels of inflammatory proteins, members of proteasome, various histones, proteins involved in cytoskeleton organization, were noticed up to 3 days (short-term response). Some of these proteins were linked with Neutrophil Extracellular Trap formation (NETosis). Long-term response was also characterized by a persistent altered expression of proteins up to 180 days. Altogether, these results suggest that exposure to low toxicity low solubility nanomaterials such as TiO2 may induce long-term changes in the pulmonary protein expression pattern of which the physio-pathological consequences are unknown. SIGNIFICANCE: This paper describes in rats, at the pulmonary level, the effects of inhaled nanostructured aerosol of TiO2 on the secreted proteins found in the broncho-alveolar space by comparing the proteomic profile in broncho-alveolar lavage fluid supernatants of control and exposed animals. This work brings new insights about the early events occurring following the end of exposure and suggests the formation of Neutrophil Extracellular Traps (NETosis) that could be interpret as a potential early mechanism of defense against TiO2 nanoparticles. This work also describes the long term effects (180 post-exposure days) of such an exposure and the change in secreted protein expression in the absence of significant histopathological modifications.


Assuntos
Lavagem Broncoalveolar , Exposição por Inalação/efeitos adversos , Pulmão/metabolismo , Nanopartículas/efeitos adversos , Proteômica , Titânio/toxicidade , Aerossóis , Animais , Pulmão/patologia , Masculino , Ratos , Ratos Endogâmicos F344
14.
Toxicol Lett ; 314: 133-141, 2019 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-31325633

RESUMO

Hexavalent chromium (Cr(VI)) compounds are classified as carcinogenic to humans. Whereas chromium measurements in urine and plasma attest to the last few hours of total chromium exposure (all oxidation states of chromium), chromium in red blood cells (RBC) is attributable specifically to Cr(VI) exposure over the last few days. Before recommending Cr in RBC (CrIE) as a biological indicator of Cr(VI) exposure, in vivo studies must be undertaken to assess its reliability. The present study examines the kinetics of Cr(VI) in rat after a single intravenous dose of ammonium dichromate. Chromium levels were measured in plasma, red blood cells and urine. The decay of the chromium concentration in plasma is one-phase-like (with half-life time of 0.55 day) but still measurable two days post injection. The excretion of urinary chromium peaks between five and six hours after injection and shows large variations. Intra-erythrocyte chromium (CrIE) was very constant up to a minimum of 2 days and half-life time was estimated to 13.3 days. Finally, Cr(III) does not interfere with Cr(VI) incorporation in RBC. On the basis of our results, we conclude that, unlike urinary chromium, chromium levels in RBC are indicative of the amount of dichromate (Cr(VI)) in blood.


Assuntos
Carcinógenos Ambientais/administração & dosagem , Carcinógenos Ambientais/metabolismo , Cromo/administração & dosagem , Cromo/sangue , Eritrócitos/metabolismo , Administração Intravenosa , Animais , Biomarcadores/sangue , Biomarcadores/urina , Carga Corporal (Radioterapia) , Carcinógenos Ambientais/farmacocinética , Carcinógenos Ambientais/toxicidade , Cromo/farmacocinética , Cromo/toxicidade , Masculino , Modelos Biológicos , Oxirredução , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Especificidade da Espécie , Toxicocinética
15.
Neurotoxicology ; 74: 58-66, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31121240

RESUMO

Volatile organic solvents are frequently present in industrial atmospheres. Their lipophilic properties mean they quickly reach the brain following inhalation. Acute exposure to some solvents perturbs the middle ear reflex, which could jeopardize cochlear protection against loud noises. As the physiological mechanisms involved in this protective reflex are highly complex, in vivo rodent models are required to allow rapid and reliable identification of any adverse effects of solvents on the middle ear reflex (MER). In this study, MER amplitude was measured in anesthetized Brown-Norway rats by monitoring the decrease in distortion product otoacoustic emissions (DPOAEs) caused by a contralateral stimulation. Our screening test consisted in measuring the impact of inhalation of solvent vapors at 3000 ppm for 15 min on the MER amplitude. We had previously studied a selection of aromatic solvents with this model; here, we extended the analysis to volatile compounds from other chemical families. The results obtained shed light on the mechanisms involved in the interactions between solvents and their neuronal targets. Thus, benzene and chlorobenzene had the greatest effect on MER (≥ + 1.8 dB), followed by a group composed of toluene, styrene, p-xylene, m-xylene, tetrachloroethylene and cyclohexane, which had a moderate effect on the MER (between + 0.3 and + 0.7 dB). Finally, trichloroethylene, n-hexane, methyl-ethyl-ketone, acetone, o-xylene, and ethylbenzene had no effect on the MER. Thus, the effect of solvents on the MER is not simply linked to their lipophilicity, rather it depends on specific interactions with neuronal targets. These interactions appear to be governed by the compound's chemical structure, e.g. the presence of an aromatic ring and its steric hindrance. In addition, perturbation of the MER by a solvent is independent of its toxic effects on cochlear cells. As the MER plays a protective role against exposure to high-intensity noises, these findings could have a significant impact in terms of prevention for subjects exposed to both noise and solvents.


Assuntos
Vias Auditivas/efeitos dos fármacos , Orelha Média/efeitos dos fármacos , Reflexo Acústico/efeitos dos fármacos , Solventes/toxicidade , Estimulação Acústica , Animais , Cóclea/patologia , Relação Dose-Resposta a Droga , Ketamina/toxicidade , Masculino , Ruído/efeitos adversos , Emissões Otoacústicas Espontâneas/efeitos dos fármacos , Ratos , Ratos Endogâmicos BN , Relação Estrutura-Atividade , Xilazina/toxicidade
16.
Toxicol Appl Pharmacol ; 375: 17-31, 2019 07 15.
Artigo em Espanhol | MEDLINE | ID: mdl-31075343

RESUMO

Multi-walled carbon nanotubes (MWCNTs), which vary in length, diameter, functionalization and specific surface area, are used in diverse industrial processes. Since these nanomaterials have a high aspect ratio and are biopersistant in the lung, there is a need for a rapid identification of their potential health hazard. We assessed in Sprague-Dawley rats the pulmonary toxicity of two pristine MWCNTs (the "long and thick" NM-401 and the "short and thin" NM-403) following either intratracheal instillation or 4-week inhalation in order to gain insights into the predictability and intercomparability of the two methods. The deposited doses following inhalation were lower than the instilled doses. Both types of carbon nanotube induced pulmonary neutrophil influx using both exposure methods. This influx correlated with deposited surface area across MWCNT types and means of exposure at two different time points, 1-3 days and 28-30 days post-exposure. Increased levels of DNA damage were observed across doses and time points for both exposure methods, but no dose-response relationship was observed. Intratracheal instillation of NM-401 induced fibrosis at the highest dose while lower lung deposited doses obtained by inhalation did not induce such lung pathology. No fibrosis was observed following NM-403 exposure. When the deposited dose was taken into account, sub-acute inhalation and a single instillation of NM-401 and NM-403 produced very similar inflammation and DNA damage responses. Our data suggest that the dose-dependent inflammatory responses observed after intratracheal instillation and inhalation of MWCNTs are similar and were predicted by the deposited surface area.


Assuntos
Pneumopatias/induzido quimicamente , Nanotubos de Carbono/toxicidade , Animais , Líquido da Lavagem Broncoalveolar/citologia , Ensaio Cometa , Dano ao DNA/efeitos dos fármacos , Vias de Administração de Medicamentos , Exposição por Inalação , Ratos , Ratos Sprague-Dawley
17.
Toxicol Appl Pharmacol ; 356: 54-64, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30012374

RESUMO

The number of workers potentially exposed to nanoparticles (NPs) during industrial processes is increasing, although the toxicological properties of these compounds still need to be fully characterized. As NPs may be aerosolized during industrial processes, inhalation represents their main route of occupational exposure. Here, the short- and long-term pulmonary toxicological properties of titanium dioxide were studied, using conventional and molecular toxicological approaches. Fischer 344 rats were exposed to 10 mg/m3 of a TiO2 nanostructured aerosol (NSA) by nose-only inhalation for 6 h/day, 5 days/week for 4 weeks. Lung samples were collected up to 180 post-exposure days. Biochemical and cytological analyses of bronchoalveolar lavage (BAL) showed a strong inflammatory response up to 3 post-exposure days, which decreased overtime. In addition, gene expression profiling revealed overexpression of genes involved in inflammation that was maintained 6 months after the end of exposure (long-term response). Genes involved in oxidative stress and vascular changes were also up-regulated. Long-term response was characterized by persistent altered expression of a number of genes up to 180 post-exposure days, despite the absence of significant histopathological changes. The physiopathological consequences of these changes are not fully understood, but they should raise concerns about the long-term pulmonary effects of inhaled biopersistent NPs such as TiO2.


Assuntos
Perfilação da Expressão Gênica , Pulmão/patologia , Nanoestruturas/toxicidade , Titânio/toxicidade , Aerossóis , Animais , Vasos Sanguíneos/efeitos dos fármacos , Líquido da Lavagem Broncoalveolar , Regulação da Expressão Gênica/efeitos dos fármacos , Exposição por Inalação/efeitos adversos , Linfonodos/patologia , Masculino , Análise em Microsséries , Estresse Oxidativo/genética , Ratos , Ratos Endogâmicos F344 , Titânio/administração & dosagem
18.
Neurotoxicology ; 67: 270-278, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29928918

RESUMO

Chronic occupational exposure to carbon disulfide (CS2) has debilitating motor and sensory effects in humans, which can increase the risk of falls. Although no mention of vestibulotoxic effects is contained in the literature, epidemiological and experimental data suggest that CS2 could cause low-frequency hearing loss when associated with noise exposure. Low-frequency noise might also perturb the peripheral balance receptor through an as-yet unclear mechanism. Here, we studied how exposure to a low-frequency noise combined with 250-ppm CS2 affected balance in rats. Vestibular function was tested based on post-rotary nystagmus recorded by a video-oculography system. These measurements were completed by behavioral tests and analysis of the cerebellum to measure expression levels for gene expression associated with neurotoxicity. Assays were performed prior to and following a 4-week exposure, and again after a 4-week recovery period. Functional measurements were completed by histological analyses of the peripheral organs.Nystagmus was unaltered by exposure to noise alone, while CS2 alone caused a moderate 19% decrease of the saccade number. In contrast, coexposure to 250-ppm CS2 and low-frequency noise decreased both saccade number and duration by 33% and 34%, respectively. After four weeks, recovery was only partial but measures were not significantly different from pre-exposure values. Real-time quantitative polymerase chain reaction (RT-qPCR) analysis of cerebellar tissue revealed a slight but significant modification in expression levels for two genes linked to neurotoxicity in CS2-exposed animals. However, neither histopathological changes to the peripheral receptor nor behavioral differences were observed. Based on all these results, we propose that the effects of CS2 were due to reversible neurochemical disturbance of the efferent pathways managing post-rotatory nystagmus. Because the nervous structures involving the vestibular function appear particularly sensitive to CS2, post-rotary nystagmus could be used as an early, non-invasive measurement to diagnose CS2 intoxication as part of an occupational conservation program.


Assuntos
Estimulação Acústica/efeitos adversos , Dissulfeto de Carbono/toxicidade , Ruído/efeitos adversos , Vestíbulo do Labirinto/efeitos dos fármacos , Vestíbulo do Labirinto/fisiologia , Animais , Dissulfeto de Carbono/administração & dosagem , Feminino , Ruído/prevenção & controle , Exposição Ocupacional/efeitos adversos , Exposição Ocupacional/prevenção & controle , Ratos , Ratos Long-Evans , Vestíbulo do Labirinto/patologia
19.
Xenobiotica ; 48(7): 684-694, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28783416

RESUMO

1. Multiple exposures are ubiquitous in industrial environments. In this article, we highlight the risks faced by workers and complete the data available on the metabolic impact of a common mixture: toluene (TOL) and methylethylketone (MEK). 2. Rats were exposed by inhalation under controlled conditions either to each solvent individually, or to mixtures of the two. How the interaction between the two solvents affected their fate in the blood and brain, their main relevant urinary metabolites (o-cresol, benzylmercapturic acid for TOL and 2,3-butanediols for MEK) and their hepatic metabolism were investigated. 3. Although the cytochrome P450 concentration was unchanged, and the activities of CYP1A2 and CYP2E1 isoforms were not additively or synergistically induced by co-exposure, TOL metabolism was inhibited by the presence of MEK (and vice versa). Depending on the relative proportions of each compound in the mixture, this sometimes resulted in a large increase in blood and brain concentrations. Apart from extreme cases (unbalanced mixtures), the amount of o-cresol and benzylmercapturic acid (and to a lesser extent 2,3-butanediols) excreted were proportional to the blood solvent concentrations. 4. In a co-exposure context, ortho-cresol and benzylmercapturic acid can be used as urinary biomarkers in biomonitoring for employees to relatively accurately assess TOL exposure.


Assuntos
Butanonas/metabolismo , Butanonas/toxicidade , Exposição por Inalação , Tolueno/metabolismo , Tolueno/toxicidade , Animais , Bioensaio , Peso Corporal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Butanonas/sangue , Butanonas/urina , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Tamanho do Órgão/efeitos dos fármacos , Ratos Endogâmicos BN , Tolueno/sangue , Tolueno/urina
20.
Drug Chem Toxicol ; 41(1): 42-50, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28633598

RESUMO

Methylethylketone (MEK) is widely used in industry, often in combination with other compounds. Although nontoxic, it can make other chemicals harmful. This study investigates the fate of MEK in rat blood, brain and urine as well as its hepatic metabolism following inhalation over 1 month (at 20, 200 or 1400 ppm). MEK did not significantly accumulate in the organism: blood concentrations were similar after six-hour or 1-month inhalation periods, and brain concentrations only increased slightly after 1 month's exposure. Urinary excretion, based on the major metabolites, 2,3-butanediols (± and meso forms), accounted for less than 2.4% of the amount inhaled. 2-Butanol, 3-hydroxy-2-butanone and MEK itself were only detectable in urine in the highest concentration conditions investigated, when metabolic saturation occurred. Although MEK exposure did not alter the total cytochrome P450 concentration, it induced activation of both CYP1A2 and CYP2E1 enzymes. In addition, the liver glutathione concentration (reduced and oxidized forms) decreased, as did glutathione S-transferase (GST) activity (at exposure levels over 200 ppm). These metabolic data could be useful for pharmacokinetic model development and/or verification and suggest the ability of MEK to influence the metabolism (and potentiate the toxicity) of other substances.


Assuntos
Butanonas/farmacocinética , Acetoína/urina , Administração por Inalação , Animais , Biotransformação , Encéfalo/metabolismo , Butanóis/urina , Butanonas/administração & dosagem , Butanonas/sangue , Butanonas/urina , Citocromo P-450 CYP1A2/metabolismo , Citocromo P-450 CYP2E1/metabolismo , Ativação Enzimática , Glutationa/metabolismo , Glutationa Transferase/metabolismo , Fígado/efeitos dos fármacos , Fígado/enzimologia , Masculino , Ratos Endogâmicos BN , Eliminação Renal , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA