Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Microb Pathog ; 180: 106147, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37169312

RESUMO

This study aimed to evaluate the antibiotic effects of the fixed oils of Acrocomia aculeata (FOAA) and Syagrus cearenses (FOSC) against the bacterial strains and the fungi strains of the genus Candida spp. The method of serial microdilution using different concentrations was used for measuring the individual biological activity of the fixed oils. The fixed oil of A. aculeata showed the presence of oleic acid (24.36%), while the oil of S. cearensis displayed the content of myristic acid (18.29%), compounds detected in high concentration. The combination FOAA + Norfloxacin, and FOSC + Norfloxacin showed antibacterial activity against E. coli and S. aureus strains, demonstrating possible synergism and potentiation of the antibiotic action against multidrug-resistant strains. The combination FOAA + Fluconazole displayed a significant effect against Candida albicans (IC50 = 15.54), C. krusei (IC50 = 78.58), and C. tropicalis (IC50 = 1588 µg/mL). Regarding FOSC + Fluconazole, it was also observed their combined effect against the strains of C. albicans (IC50 = 3385 µg/mL), C. krusei (IC50 = 26.67 µg/mL), and C. tropicalis (IC50 = 1164 µg/mL). The findings of this study showed a significant synergism for both fixed oils tested when combined with the antibiotic.


Assuntos
Anti-Infecciosos , Arecaceae , Fluconazol/farmacologia , Arecaceae/química , Norfloxacino/farmacologia , Escherichia coli , Staphylococcus aureus , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Candida albicans , Óleos de Plantas/farmacologia , Antibacterianos/farmacologia , Candida tropicalis , Testes de Sensibilidade Microbiana , Antifúngicos/farmacologia , Antifúngicos/química
2.
Int J Biol Macromol ; 222(Pt B): 2823-2832, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36228819

RESUMO

Mannose/glucose-binding lectin from Canavalia ensiformis seeds (Concanavalin A - ConA) has several biological applications, such as mitogenic and antitumor activity. However, most of the mechanisms involved in the in vivo toxicity of ConA are not well known. In this study, the Drosophila melanogaster model was used to assess the toxicity and genotoxicity of different concentrations of native ConA (4.4, 17.5 and 70 µg/mL) in inhibited and denatured forms of ConA. The data show that native ConA affected: the survival, in the order of 30.6 %, and the locomotor performance of the flies; reduced cell viability to levels below 50 % (4.4 and 17.5 µg/mL); reduced nitric oxide levels; caused lipid peroxidation and increased protein and non-protein thiol content. In the Comet assay, native ConA (17.5 e 70 µg/mL) caused DNA damage higher than 50 %. In contrast, treatments with inhibited and denatured ConA did not affect oxidative stress markers and did not cause DNA damage. We believe that protein-carbohydrate interactions between ConA and carbohydrates of the plasma membrane are probably the major events involved in these activities, suggesting that native ConA activates mechanisms that induce oxidative stress and consequently DNA damage.


Assuntos
Canavalia , Drosophila melanogaster , Animais , Canavalia/química , Drosophila melanogaster/metabolismo , Concanavalina A/química , Dano ao DNA , Estresse Oxidativo
3.
Pharmaceuticals (Basel) ; 15(10)2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36297389

RESUMO

Microbial resistance has become a worrying problem in recent decades after the abusive use of antibiotics causing the selection of resistant microorganisms. In order to circumvent such resistance, researchers have invested efforts in the search for promising natural substances, such as essential oils. Thus, the objective of this work was to determine the chemical composition of the essential oil of Acritopappus confertus leaves, to evaluate its intrinsic effect and its effects in combination with drugs against pathogenic fungi and bacteria, in addition to verifying the inhibition of virulence in Candida strains. To this end, the oil was verified by gas chromatography coupled with mass spectrometry (GC/MS). Candida strains were used for antifungal assays by means of the serial microdilution technique, in order to determine the average inhibitory concentration (IC50), and for the modification assays, sub-inhibitory concentrations (MIC/8) were used. Finally, the natural product's ability to inhibit the formation of filamentous structures was evaluated. In antibacterial tests, the MIC of the oil against strains of Staphylococcus aureus and Escherichia coli and its modifying effects in association with gentamicin, erythromycin, and norfloxacin were determined. The major constituent of the essential oil was the monoterpene myrcene (54.71%). The results show that the essential oil has an antifungal effect, with C. albicans strains being the most susceptible. Furthermore, the oil can potentiate the effect of fluconazole against strains of C. tropicalis and C. albicans. Regarding its effect on micromorphology, the oil was also able to inhibit the filaments in all strains. In combination with antibiotics, the oil potentiated the drug's action by reducing the MIC against E. coli and S. aureus. It can be concluded that the essential oil of A. confertus has potential against pathogenic fungi and bacteria, making it a target for the development of an antimicrobial drug.

4.
Molecules ; 27(13)2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35807377

RESUMO

Species of the genus Miconia are used in traditional medicine for the treatment of diseases, such as pain, throat infections, fever, and cold, and they used as depuratives, diuretics, and sedatives. This work reviewed studies carried out with Miconia species, highlighting its ethnomedicinal uses and pharmacological and phytochemical potential. This information was collected in the main platforms of scientific research (PubMed, Scopus, and Web of Science). Our findings show that some of the traditional uses of Miconia are corroborated by biological and/or pharmacological assays, which demonstrated, among other properties, anti-inflammatory, analgesic, antimutagenic, antiparasitic, antioxidant, cytotoxic, and antimicrobial activities. A total of 148 chemical compounds were identified in Miconia species, with phenolic compounds being the main constituents found in the species of this genus. Such phytochemical investigations have demonstrated the potential of species belonging to this genus as a source of bioactive substances, thus reinforcing their medicinal and pharmacological importance.


Assuntos
Melastomataceae , Etnofarmacologia , Medicina Tradicional , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico , Fitoterapia , Extratos Vegetais/química , Extratos Vegetais/farmacologia
5.
Molecules ; 27(10)2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35630757

RESUMO

One of the main global problems that affect human health is the development of bacterial resistance to different drugs. As a result, the growing number of multidrug-resistant pathogens has contributed to an increase in resistant infections and represents a public health problem. The present work seeks to investigate the chemical composition and antibacterial activity of the essential oil of Syzygium cumini leaves. To identify its chemical composition, gas chromatography coupled to mass spectrometry was used. The antibacterial activity test was performed with the standard strains Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 25853 and Staphylococcus aureus ATCC 25923 and multidrug-resistant clinical isolates E. coli 06, P. aeruginosa 24 and S. aureus 10. The minimum inhibitory concentration (MIC) was determined by serial microdilution as well as the verification of the modulating effect of the antibiotic effect. In this test, the oil was used in a subinhibitory concentration. The test reading was performed after 24 h of incubation at 37 °C. The results show that the major chemical constituent is α-pinene (53.21%). The oil showed moderate activity against E. coli ATCC 25922, with the MIC of 512 µg/mL; there was no activity against the other strains. The oil potentiated the effect of antibiotics demonstrating possible synergism when associated with gentamicin, erythromycin and norfloxacin against E. coli 06 and S. aureus 10.


Assuntos
Óleos Voláteis , Syzygium , Antibacterianos/química , Antibacterianos/farmacologia , Escherichia coli , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Compostos Fitoquímicos/farmacologia , Pseudomonas aeruginosa , Staphylococcus aureus
6.
Artigo em Inglês | MEDLINE | ID: mdl-35310039

RESUMO

Mesosphaerum suaveolens (L.) Kuntze is a species widely used traditionally in the treatment of ailments, such as stomach pain, hemorrhoids, cough, verminosis, ulcer, liver disease, fever, influenza, nasal congestion, and inflammation. This review aims to provide a survey of available information on seven international electronic databases (Google Scholar, Medline, ResearchGate, Web of Science, Scopus, Science Direct, and PubMed) about botanical aspects, traditional uses, phytochemistry, and biological activities of M. suaveolens. Mesosphaerum suaveolens is a tropical America native species, but it can be found in several parts of the world as a ruderal plant. The species is the most studied species of the genus Lamiaceae due its phytochemical aspect, especially regarding the chemical composition of its essential oil. Besides the essential oils, M. suaveolens is a source of numerous secondary compounds such as triterpenes, diterpenes, and phenolic compounds, which are related to its biological activities, such as allelopathic, antibacterial, antifungal, insecticidal, and larvicidal activities as described in the literature.

7.
Antioxidants (Basel) ; 11(2)2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35204302

RESUMO

Thiazolidine compounds NJ20 {(E)-2-(2-(5-bromo-2-methoxybenzylidene)hydrazinyl)-4-(4-nitrophenyl)thiazole} and NW05 [(2-(benzo (d) (1,3) dioxol-4-ylmethylene)-N-(4-bromophenyl)-thiosemicarbazone] potentiated the effect of norfloxacin in resistant bacteria; however, there are no reports on their effects on Nauphoeta cinerea in the literature. The objective of this work was to evaluate the behavioral effects and oxidative markers of NW05 and NJ20 in lobster cockroach N. cinerea. To evaluate the behavioral study, a video tracking software was used to evaluate the locomotor points and the exploratory profile of cockroaches in the horizontal and vertical regions of a new environment. The total concentration of thiol and reduced glutathione (GSH), substances reactive to thiobarbituric acid (TBARS), free iron (II) content and mitochondrial viability were determined. The antioxidant potential was evaluated by the DPPH method. Both substances induced changes in the behavior of cockroaches, showing a significant reduction in the total distance covered and in the speed. In the cell viability test (MTT), there was a significant reduction for NJ20 (1 mM). NJ20 caused a significant increase in total levels of thiol and non-protein thiol (NPSH), although it also slightly increased the content of malondialdehyde (MDA). Both compounds (NW05 and NJ20) caused a significant reduction in the content of free iron at a concentration of 10 mM. In conclusion, the compound NJ20 caused moderate neurotoxicity (1 mM), but had good antioxidant action, while NW05 did not show toxicity or significant antioxidant activity in the model organism tested. It is desirable to carry out complementary tests related to the antioxidant prospection of these same compounds, evaluating them at different concentrations.

8.
J Mycol Med ; 31(3): 101171, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34224939

RESUMO

In recent decades, fungal infections have been increasing, as well as the indiscriminate use of large-scale antifungal. The objective of the present study was to characterize the chemical components of L. montevidensis leaf essential oil (EOLm) and evaluate its antifungal potential and fluconazole modulating activity against Candida strains. The essential oil was obtained by hydrodistillation and its chemical components were determined by Gas Chromatography coupled to Mass Spectrometry. The antifungal activity was determined by the microdilution method to determine the minimum inhibitory concentration. The modulatory activity of fluconazole by the oil (EOLm) was evaluated against the four Candida strains. Our results demonstrated a predominance of ß-Caryophyllene (34.96%) and Germacrene D (25.49%), while (E)-Caryophyllene (0.08%) and δ-Cadinene (0.13%) were the minor constituents. For the antifungal activity, it was evidenced that the EOLm did not inhibit the growth of Candida albicans (CA LM 77 and CA INQS 40006) and Candida tropicalis (CT INCQS 40042 and CT LM 23), but, potentiated the effect of fluconazole in particular against C. tropicalis, although the FIC index indicates indifferent modulation for all strains tested. This study strongly suggests that administration of the fluconazole in combination with plant essential oils can provide a new opportunity to improve the outcome of the drug effect.


Assuntos
Lantana , Óleos Voláteis , Antifúngicos/farmacologia , Candida albicans , Candida tropicalis , Fluconazol/farmacologia , Testes de Sensibilidade Microbiana , Óleos Voláteis/farmacologia
9.
Artigo em Inglês | MEDLINE | ID: mdl-34182094

RESUMO

Mercury chloride (HgCl2) acts as a bioaccumulator capable of causing numerous neurological and physiological changes in organisms in a negative way. However, rutin has been considered a very effective antioxidant compound in the treatment of neurodegenerative diseases, as it can neutralize radicals capable of damaging neuronal cells. In this context, this study aimed to evaluate rutin as a neoprotective agent against the damage induced by HgCl2 in Drosophila melanogaster. The exposure of the flies to the agents was carried out in triplicate, and about 150 adult flies were evaluated. To assess the antioxidant action of rutin, MTT, phenanthroline, nitric oxide, total thiols and NPSH tests were carried out in the following concentrations: Control (1500 µL of distilled water), 1 mg/g of HgCl2, 0.5 mg/g of Rutin + HgCl2, 1 mg/g of Rutin + HgCl2, 2 mg/g of Rutin + HgCl2. The locomotion test was verified by negative geotaxis, the result of which showed that flies exposed to HgCl2 had difficulties in flight. The group treated with HgCl2 alone had a high mortality rate, while in combination with different concentrations of rutin, it heard a moderate reduction in the number of deaths, as well as in the negative geotaxis data in which the rutin had a positive effect. An increase in iron (II) levels was observed at the highest concentrations of rutin, while at low concentrations, rutin significantly decreased nitric oxide levels. The HgCl2 + R group (2 mg/g) showed a significant increase in the total thiols content, while for the NPSH all rutin concentrations showed a significant increase in the levels of non-protein thiols. Our results demonstrate that mercury chloride can cause oxidative stress in D. melanogaster. However, the results suggest that rutin has antioxidant and protective effects against the damage caused by HgCl2.


Assuntos
Drosophila melanogaster/efeitos dos fármacos , Cloreto de Mercúrio/toxicidade , Fármacos Neuroprotetores/farmacologia , Rutina/farmacologia , Animais , Antioxidantes/farmacologia , Drosophila melanogaster/fisiologia , Ferro/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mortalidade , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Óxido Nítrico/metabolismo , Compostos de Sulfidrila/metabolismo
10.
Microb Pathog ; 107: 280-286, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28385578

RESUMO

The association of herbal products with standard antimicrobial drugs has recently gained more attention as a hope to overcome infectious diseases caused by multidrug-resistant microorganisms. Here, we investigated for the first time the antimicrobial (antifungal and antibacterial) activity of ethanolic and aqueous extracts of R. echinus against multiresistant strains of bacteria (E. coli, P. aeruginosa and S. aureus) and fungi (C. albicans, C. krusei and C. tropicalis), as well as potential to enhance the activity of antibiotics drugs. In addition, both extract were chemically characterized and their toxicity was assessed in Artemia salina. Our results demonstrate that aqueous extract of R. echinus caused a significant increase in the activity of antibiotics gentamicin and imipenem, while the ethanolic extract strongly enhanced the antibiotic activity of gentamicin, amikacin, imipenem and ciprofloxacin against P. aeruginosa. However, neither the ethanolic nor the aqueous extracts significantly affect the antibiotic activity of the drugs when tested against S. aureus. Phytochemical analysis of the extracts indicated ellagic acid, caffeic acid and chlorogenic acid as the major components which can be at least in part responsible for the enhanced activity of antibiotics. None of the extracts showed toxicity in A. salina even at the highest concentration tested (1000 µg/mL). All together, our results suggest that the leaf extract of R. echinus can be an effective source of modulating agents.


Assuntos
Antibacterianos/farmacologia , Antifúngicos/farmacologia , Extratos Vegetais/farmacologia , Traqueófitas/química , Animais , Antibacterianos/química , Antifúngicos/química , Artemia/efeitos dos fármacos , Bactérias/efeitos dos fármacos , Candida/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Extratos Vegetais/química , Folhas de Planta/química , Pseudomonas aeruginosa/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA