Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
J Clin Invest ; 131(5)2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33465054

RESUMO

Group B Streptococcus (GBS) is the major cause of human neonatal infections. A single clone, designated CC17-GBS, accounts for more than 80% of meningitis cases, the most severe form of the infection. However, the events allowing blood-borne GBS to penetrate the brain remain largely elusive. In this study, we identified the host transmembrane receptors α5ß1 and αvß3 integrins as the ligands of Srr2, a major CC17-GBS-specific adhesin. Two motifs located in the binding region of Srr2 were responsible for the interaction between CC17-GBS and these integrins. We demonstrated in a blood-brain-barrier cellular model that both integrins contributed to the adhesion and internalization of CC17-GBS. Strikingly, both integrins were overexpressed during the postnatal period in the brain vessels of the blood-brain barrier and blood-cerebrospinal fluid barrier and contributed to juvenile susceptibility to CC17 meningitis. Finally, blocking these integrins decreased the ability of CC17-GBS to cross into the CNS of juvenile mice in an in vivo model of meningitis. Our study demonstrated that CC17-GBS exploits integrins in order to cross the brain vessels, leading to meningitis. Importantly, it provides host molecular insights into neonate's susceptibility to CC17-GBS meningitis, thereby opening new perspectives for therapeutic and prevention strategies of GBS-elicited meningitis.


Assuntos
Adesinas Bacterianas/metabolismo , Barreira Hematoencefálica/metabolismo , Integrina alfaVbeta3/metabolismo , Meningites Bacterianas/metabolismo , Receptores de Vitronectina/metabolismo , Infecções Estreptocócicas/metabolismo , Streptococcus agalactiae/metabolismo , Adesinas Bacterianas/genética , Animais , Animais Recém-Nascidos , Aderência Bacteriana/genética , Barreira Hematoencefálica/microbiologia , Linhagem Celular , Humanos , Integrina alfaVbeta3/genética , Meningites Bacterianas/genética , Ratos , Receptores de Vitronectina/genética , Infecções Estreptocócicas/genética , Streptococcus agalactiae/genética
2.
Gut ; 69(9): 1582-1591, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-31822580

RESUMO

OBJECTIVE: Helicobacter pylori (Hp) is a major risk factor for gastric cancer (GC). Hp promotes DNA damage and proteasomal degradation of p53, the guardian of genome stability. Hp reduces the expression of the transcription factor USF1 shown to stabilise p53 in response to genotoxic stress. We investigated whether Hp-mediated USF1 deregulation impacts p53-response and consequently genetic instability. We also explored in vivo the role of USF1 in gastric carcinogenesis. DESIGN: Human gastric epithelial cell lines were infected with Hp7.13, exposed or not to a DNA-damaging agent camptothecin (CPT), to mimic a genetic instability context. We quantified the expression of USF1, p53 and their target genes, we determined their subcellular localisation by immunofluorescence and examined USF1/p53 interaction. Usf1-/- and INS-GAS mice were used to strengthen the findings in vivo and patient data examined for clinical relevance. RESULTS: In vivo we revealed the dominant role of USF1 in protecting gastric cells against Hp-induced carcinogenesis and its impact on p53 levels. In vitro, Hp delocalises USF1 into foci close to cell membranes. Hp prevents USF1/p53 nuclear built up and relocates these complexes in the cytoplasm, thereby impairing their transcriptional function. Hp also inhibits CPT-induced USF1/p53 nuclear complexes, exacerbating CPT-dependent DNA damaging effects. CONCLUSION: Our data reveal that the depletion of USF1 and its de-localisation in the vicinity of cell membranes are essential events associated to the genotoxic activity of Hp infection, thus promoting gastric carcinogenesis. These findings are also of clinical relevance, supporting USF1 expression as a potential marker of GC susceptibility.


Assuntos
Carcinogênese , Mucosa Gástrica , Infecções por Helicobacter/metabolismo , Helicobacter pylori , Neoplasias Gástricas , Proteína Supressora de Tumor p53/genética , Fatores Estimuladores Upstream/metabolismo , Animais , Carcinogênese/genética , Carcinogênese/metabolismo , Linhagem Celular , Dano ao DNA , Mucosa Gástrica/metabolismo , Mucosa Gástrica/microbiologia , Mucosa Gástrica/patologia , Instabilidade Genômica , Helicobacter pylori/metabolismo , Helicobacter pylori/patogenicidade , Humanos , Camundongos , Complexo de Endopeptidases do Proteassoma/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/microbiologia , Ubiquitinação
3.
J Oncol ; 2019: 5415761, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32082377

RESUMO

Helicobacter pylori infection causes chronic gastritis and is the major risk factor of gastric cancer. H. pylori induces a chronic inflammation-producing reactive oxygen species (ROS) which is a source of chromosome instabilities and contributes to the development of malignancy. H. pylori also promotes DNA hypermethylation, known to dysregulate essential genes that maintain genetic stability. The maintenance of telomere length by telomerase is essential for chromosome integrity. Telomerase reverse transcriptase (TERT) is the catalytic component of telomerase activity and an important target during host-pathogen interaction. We aimed to investigate the consequences of H. pylori on the regulation of TERT gene expression and telomerase activity. In vitro, hTERT mRNA levels and telomerase activity were analysed in H. pylori-infected human gastric epithelial cells. In addition, C57BL/6 and INS-GAS mice were used to investigate the influence of H. pylori-induced inflammation on TERT levels. Our data demonstrated that, in vitro, H. pylori inhibits TERT gene expression and decreases the telomerase activity. The exposure of cells to lycopene, an antioxidant compound, restores TERT levels in infected cells, indicating that ROS are implicated in this downregulation. In vivo, fewer TERT-positive cells are observed in gastric tissues of infected mice compared to uninfected, more predominantly in the vicinity of large aggregates of lymphocytes, suggesting an inflammation-mediated regulation. Furthermore, H. pylori appears to downregulate TERT gene expression through DNA hypermethylation as shown by the restoration of TERT transcript levels in cells treated with 5'-azacytidine, an inhibitor of DNA methylation. This was confirmed in infected mice, by PCR-methylation assay of the TERT gene promoter. Our data unraveled a novel way for H. pylori to promote genome instabilities through the inhibition of TERT levels and telomerase activity. This mechanism could play an important role in the early steps of gastric carcinogenesis.

4.
Cell Cycle ; 13(6): 928-40, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24552813

RESUMO

Listeria monocytogenes (Lm) is a human intracellular pathogen widely used to uncover the mechanisms evolved by pathogens to establish infection. However, its capacity to perturb the host cell cycle was never reported. We show that Lm infection affects the host cell cycle progression, increasing its overall duration but allowing consecutive rounds of division. A complete Lm infectious cycle induces a S-phase delay accompanied by a slower rate of DNA synthesis and increased levels of host DNA strand breaks. Additionally, DNA damage/replication checkpoint responses are triggered in an Lm dose-dependent manner through the phosphorylation of DNA-PK, H2A.X, and CDC25A and independently from ATM/ATR. While host DNA damage induced exogenously favors Lm dissemination, the override of checkpoint pathways limits infection. We propose that host DNA replication disturbed by Lm infection culminates in DNA strand breaks, triggering DNA damage/replication responses, and ensuring a cell cycle delay that favors Lm propagation.


Assuntos
Ciclo Celular/fisiologia , Dano ao DNA , Interações Hospedeiro-Patógeno , Listeria monocytogenes/fisiologia , Listeriose/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Linhagem Celular Tumoral , Quebras de DNA , Reparo do DNA , Replicação do DNA , Humanos , Listeriose/microbiologia , Listeriose/patologia , Fase S , Fosfatases cdc25/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA