Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Life Sci ; 317: 121468, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36736766

RESUMO

Obesity and particulate air pollutant (PM2.5) are important risk factors for cardiometabolic diseases. PM2.5 exacerbates insulin resistance and lipid ectopic deposition in obese animals. The inorganic fraction of PM2.5, the Residual Oil Fly Ash (ROFA), is related to cardiovascular events, by enhancing the generation of reactive species, inflammatory cytokines, and leukocyte activation. However, the synergistic effects of ROFA and a high-fat diet (HFD) are still poorly described, and the studies were mainly conducted with males. AIMS: To investigate if ROFA could potentiate the cardiometabolic effects of diet-induced obesity in female rats. MATERIAL AND METHODS: Wistar female rats were divided into four groups: Control (n = 6), Polluted (n = 6), HFD (n = 6), and HFD + Polluted (n = 6). HFD and HFD + Polluted received a high-fat diet (HFD) (58.3 % as fats), whilst Control and Polluted groups received a standard diet (Nuvilab CR-1). In addition, Polluted and HFD + Polluted groups received intranasal instillation of ROFA (250 µg/50 µL), while Control and HFD groups received saline solution (50 µL) daily, five days per week. Both interventions occurred 24 weeks after the animals were euthanized. KEY FINDINGS: HFD combined with ROFA exposure impaired lipid profile challenged systemic and cardiac antioxidant defense, and presented a synergistic effect in inducing an immune-inflammatory condition. We found that the lipid profile disturbance is associated with HFD-induced hepatic, but not cardiac, deposition of triglycerides in female animals. SIGNIFICANCE: Our results support the hypothesis that ROFA exposure combined with bad feeding can exacerbate metabolic and cardiovascular diseases.


Assuntos
Poluição do Ar , Doenças Cardiovasculares , Masculino , Ratos , Feminino , Animais , Estresse Oxidativo , Ratos Wistar , Poluição do Ar/efeitos adversos , Cinza de Carvão/farmacologia , Obesidade , Lipídeos/farmacologia , Dieta Hiperlipídica/efeitos adversos , Material Particulado
2.
Environ Sci Pollut Res Int ; 30(1): 1908-1918, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35925459

RESUMO

Obesity and exposure to fine particulate matter (PM2.5) are risk factors for insulin resistance, to which physical exercise is the most powerful non-pharmacological strategy. However, public concern over whether exercise could be protective in a polluted environment exists. Therefore, evaluating the possible benefits of exercise in polluted conditions in different contexts (age, gender, and cardiometabolic health) is imperative. In this sense, muscle plays a major role in maintaining glucose homeostasis, and its oxidative status is closely affected during exercise. This study tested whether moderate aerobic training could alleviate the metabolic and oxidative impairment in the gastrocnemius induced by the combination of a high-fat diet (HFD) and PM2.5 exposure. Female mice (B6129SF2/J) received HFD (58.3% of fat) or standard diet, intranasal instillation of 20 µg residual oil fly ash (ROFA: inorganic portion of PM2.5), or saline seven times per week for 19 weeks. In the 13th week, animals were submitted to moderate training or remained sedentary. Trained animals followed a progressive protocol for 6 weeks, ending at swimming with 5% body weight of workload for 60 min, while sedentary animals remained in shallow water. Aerobic moderate training attenuated weight gain and glucose intolerance and prevented muscle and pancreatic mass loss induced by a HFD plus ROFA exposure. Interestingly, a HFD combined with ROFA enhanced the catalase antioxidant activity, regardless of physical exercise. Therefore, our study highlights that, even in polluted conditions, moderate training is the most powerful non-pharmacological treatment for obesity and insulin resistance.


Assuntos
Poluição do Ar , Intolerância à Glucose , Resistência à Insulina , Camundongos , Feminino , Animais , Dieta Hiperlipídica/efeitos adversos , Obesidade , Antioxidantes , Material Particulado , Camundongos Endogâmicos C57BL
3.
Inflamm Res ; 71(12): 1433-1448, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36264363

RESUMO

INTRODUCTION: Cardiovascular diseases (CVD) have been associated with high exposure to fine particulate air pollutants (PM2.5). Alveolar macrophages are the first defense against inhaled particles. As soon as they phagocytize the particles, they reach an inflammatory phenotype, which affects the surrounding cells and associates with CVD. Not coincidentally, CVD are marked by a depleted heat shock response (HSR), defined by a deficit in inducing 70-kDa heat shock protein (HSP70) expression during stressful conditions. HSP70 is a powerful anti-inflammatory chaperone, whose reduced levels trigger a pro-inflammatory milieu, cellular senescence, and a senescence-associated secretory phenotype (SASP). However, whether macrophage senescence is the main mechanism by which PM2.5 propagates low-grade inflammation remains unclear. OBJECTIVE AND DESIGN: In this article, we review evidence supporting that chronic exposure to PM2.5 depletes HSR and determines the ability to solve the initial stress. RESULTS AND DISCUSSION: When exposed to PM2.5, macrophages increase the production of reactive oxygen species, which activate nuclear factor-kappa B (NF-κB). NF-κB is naturally a pro-inflammatory factor that drives prostaglandin E2 (PGE2) synthesis and causes fever. PGE2 can be converted into prostaglandin A2, a powerful inducer of HSR. Therefore, when transiently activated, NF-κB can trigger the anti-inflammatory response through negative feedback, by inducing HSP70 expression. However, when chronically activated, NF-κB heads a set of pathways involved in mitochondrial dysfunction, endoplasmic reticulum stress, unfolded protein response, inflammasome activation, and apoptosis. During chronic exposure to PM2.5, cells cannot properly express sirtuin-1 or activate heat shock factor-1 (HSF-1), which delays the resolution phase of inflammation. Since alveolar macrophages are the first immune defense against PM2.5, we suppose that the pollutant impairs HSR and, consequently, induces cellular senescence. Accordingly, senescent macrophages change its secretory phenotype to a more inflammatory one, known as SASP. Finally, macrophages' SASP would propagate the systemic inflammation, leading to endothelial dysfunction and atherosclerosis.


Assuntos
Poluição do Ar , Aterosclerose , Pneumonia , Humanos , NF-kappa B/metabolismo , Dinoprostona , Resposta ao Choque Térmico , Macrófagos/metabolismo , Inflamação/metabolismo , Material Particulado/toxicidade , Anti-Inflamatórios , Poluição do Ar/efeitos adversos
4.
Cell Stress Chaperones ; 27(5): 523-534, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35767179

RESUMO

Decreased estrogen levels in menopause are associated with anthropometric, metabolic, and inflammatory impairments, predisposing women to cardiometabolic risk factors such as diabetes. Menopause and type two diabetes (DM2) are marked by altered heat shock response (HSR), shown by decreased expression of the 70-kDa heat shock protein in the intracellular milieu (iHSP70). While iHSP70 plays an anti-inflammatory role, extracellular HSP70 (eHSP70) may mediate pro-inflammatory pathways and has been associated with insulin resistance in DM2. Considering the roles of these proteins according to localization, the eHSP70-to-iHSP70 ratio (H-index) has been proposed as a biomarker for HSR. We, therefore, evaluated whether this biomarker is associated with glycemic and inflammatory status in postmenopausal women. In this transversal study, 36 postmenopausal women were grouped according to fasting glycemia status as either the control group (normoglycemic, ≤ 99 mg/dL) or DM2 (prediabetic and diabetic, glycemia ≥ 100 mg/dL). DM2 group showed higher triglyceride/glucose (TyG) index and plasma atherogenic index (PAI), both of which are indicators of cardiometabolic risk. In addition, we found that the eHSP70-to-iHSP70 ratio (plasma/peripheral blood mononuclear cells-PBMC ratio) was higher in the DM2 group, compared with the control group. Furthermore, blood leukocyte and glycemia levels were positively correlated with the eHSP70-to-iHSP70 ratio in women that presented H-index values above 1.0 (a.u.). Taken together, our results highlight the eHSP70-to-iHSP70 ratio as a biomarker of altered HSR in DM2 postmenopausal women.


Assuntos
Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , Proteínas de Choque Térmico HSP70 , Pós-Menopausa , Estado Pré-Diabético , Biomarcadores/metabolismo , Glicemia , Doenças Cardiovasculares/diagnóstico , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Estrogênios , Feminino , Proteínas de Choque Térmico HSP110/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Humanos , Leucócitos Mononucleares/metabolismo , Estado Pré-Diabético/complicações , Estado Pré-Diabético/metabolismo , Triglicerídeos
5.
Arch Physiol Biochem ; 128(4): 1016-1023, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32293198

RESUMO

The 70-kDa heat shock proteins (HSP70) may provide relevant information about the endothelial dysfunction in cardiovascular diseases. Located in the intracellular milieu (iHSP70), they are essential chaperones that inhibit nuclear factor kappa B activation, stimulate nitric oxide production and superoxide dismutase activity, and inhibit apoptosis. However, under stressful conditions, HSP70 can be released into the extracellular medium (eHSP70) and act as an inflammatory mediator. Although studies have reported the vasoprotective role of iHSP70, the evidence regarding eHSP70 is contradictory. eHSP70 can activate NFκB and activator protein-1, thus stimulating the release of inflammatory cytokines and production of reactive oxygen species. Due to the antagonistic nature of HSP70 according to its location, the eHSP70/iHSP70 ratio (Heck index) has been proposed as a better marker of inflammatory status; however, more studies are required to confirm this hypothesis. Therefore, this review summarises studies that, together, describe the role of HSP70 in endothelial dysfunction.


Assuntos
Aterosclerose , Proteínas de Choque Térmico HSP70 , Biomarcadores , Citocinas , Proteínas de Choque Térmico HSP70/metabolismo , Humanos , NF-kappa B/metabolismo
6.
Cell Stress Chaperones ; 26(6): 889-915, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34677749

RESUMO

Physical exercise has acute and chronic effects on inflammatory balance, metabolic regulation, and redox status. Exercise-induced adaptations are mediated by enhanced 70-kDa heat shock protein (HSP70) levels and an improved heat shock response (HSR). Therefore, exercise could be useful against disease conditions [obesity, diabetes mellitus (DM), and exposure to atmospheric pollutants] marked by an impaired HSR. However, exercise performed by obese or diabetic subjects under pollution conditions might also be dangerous at certain intensities. Intensity correlates with an increase in HSP70 levels during physical exercise until a critical point at which the effort becomes harmful and impairs the HSR. Establishing a unique biomarker able to indicate the exercise intensity on metabolism and cellular fatigue is essential to ensure adequate and safe exercise recommendations for individuals with obesity or DM who require exercise to improve their metabolic status and live in polluted regions. In this review, we examined the available evidence supporting our hypothesis that HSP70 could serve as a biomarker for determining the optimal exercise intensity for subjects with obesity or diabetes when exposed to air pollution and establishing the fine threshold between anti-inflammatory and pro-inflammatory exercise effects.


Assuntos
Poluição do Ar/efeitos adversos , Exercício Físico/efeitos adversos , Proteínas de Choque Térmico HSP70/sangue , Inflamação/sangue , Biomarcadores/sangue , Complicações do Diabetes/sangue , Complicações do Diabetes/complicações , Complicações do Diabetes/terapia , Resposta ao Choque Térmico/efeitos dos fármacos , Humanos , Inflamação/induzido quimicamente , Obesidade/sangue , Obesidade/complicações , Obesidade/terapia , Estresse Oxidativo/efeitos dos fármacos
7.
J Diabetes Res ; 2021: 3314871, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34568498

RESUMO

Women live approximately one-third of their lives in postmenopause. Among postmenopausal women, type 2 diabetes mellitus (DM2) is one of the most prevalent chronic diseases. These conditions promote alterations in the oxidative, metabolic, and immune-inflammatory profiles marked by higher extracellular 72 kDa-heat shock protein (eHSP72). Here, we investigated whether the time of menopause is associated with oxidative cellular stress marker levels in postmenopausal women with DM2. Sixty-four women were recruited (56.7 ± 12.6 years old) in the pre- (n = 22) and postmenopause (n = 42) period, with (n = 19) or without DM2 (n = 45), and a fasting blood collection was made for the evaluation of metabolic, oxidative, and inflammatory markers. We found that menopause and DM2 influenced metabolic and oxidative parameters and presented synergistic effects on the plasma lipoperoxidation levels. Also, postmenopausal women had the highest eHSP72 concentration levels associated with the years in postmenopause. We conclude that the time of menopause impacts the markers of cellular stress and increases the risk of oxidative stress, mainly when it is associated with DM2.


Assuntos
Diabetes Mellitus Tipo 2/sangue , Proteínas de Choque Térmico HSP72/sangue , Estresse Oxidativo , Pós-Menopausa/sangue , Adulto , Idoso , Brasil , Feminino , Humanos , Pessoa de Meia-Idade
8.
Environ Sci Pollut Res Int ; 28(18): 23395-23404, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33443732

RESUMO

Fine particulate matter (PM2.5) has been considered a risk factor for cardiovascular diseases by inducing an oxidative and inflammatory phenotype. Besides, the reduction of 17ß-estradiol (E2) levels during menopause is a natural risk for cardiovascular outcomes. During the E2 downfall, there is a high requirement of the 70-kDa heat shock proteins (HSP70), which present essential antioxidant, anti-inflammatory, and anti-senescence roles. We investigated if the ovariectomy, an animal model for menopause, could induce additional effects in cardiac health by impairing oxidative and heat shock response parameters of female rats chronically exposed to residual oil fly ash (ROFA; an inorganic fraction of PM2.5). Thus, ROFA was obtained from São Paulo (Brazil) and solubilized it in saline. Further, female Wistar rats were exposed to 50 µL of saline (control group) or ROFA solution (250 µg) (polluted) by intranasal instillation, 5 days/week, 12 weeks. At the 12th week, animals were subdivided into four groups (n = 6 p/group): control, OVX, polluted, and polluted + OVX. Control and polluted were submitted to false surgery, while OVX and polluted + OVX were ovariectomized. ROFA or saline exposure continued for 12 weeks. Ovariectomy reduced the cardiac catalase activity and iHSP70 expression in female rats exposed to ROFA. Neither plasma eHSP72 levels nor H-index (eHSP72 to cardiac iHSP70 ratio) was affected. In conclusion, ovariectomy reduces the cardiac cytoprotection and antioxidant defense, and enhances the susceptibility to premature cellular senescence in rats exposed to ROFA.


Assuntos
Poluentes Atmosféricos , Animais , Brasil , Cinza de Carvão , Citoproteção , Feminino , Humanos , Ovariectomia , Estresse Oxidativo , Material Particulado , Ratos , Ratos Wistar
9.
Exp Gerontol ; 145: 111215, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33340683

RESUMO

Obesity and exposure to fine particulate matter (air pollutant PM2.5) are important risk factors for metabolic and cardiovascular diseases. They are also related to early menopause. The reduction of 17ß-estradiol (E2) levels during female climacteric, marked by menopause, is of significant concern because of its imminent influence on metabolism, redox and inflammatory status. This complex homeostasis-threatening scenario may induce a heat shock response (HSR) in cells, enhancing the expression of the 70 kDa heat shock protein (HSP70). A failure in this mechanism could predispose women to cardiovascular diseases. In this study, we evaluated if the climacteric could represent an additional risk among obese rats exposed to PM2.5 by worsening lipid, oxidative, and inflammatory parameters and HSP70 in cardiac tissue. We induced obesity in female Wistar rats using a high-fat diet (HFD) (58.3% as fats) and exposed them to 50 µL of saline 0.9% (control, n = 15) or 250 µg residual oil fly ash (ROFA, the inorganic portion of PM2.5) (polluted, n = 15) by intranasal instillation, 5 days/w for 12 weeks. At the 12th week, we subdivided these animals into four groups: control (n = 6), OVX (n = 9), polluted (n = 6) and polluted + OVX (n = 9). OVX and polluted + OVX were submitted to a bilateral ovariectomy (OVX), a surgical model for menopause, while control and polluted received a false surgery (sham). ROFA exposure and HFD consumption were continued for 12 additional weeks, after which the animals were euthanized. ROFA enhanced the susceptibility to ovariectomy-induced dyslipidemia, while ovariectomy predisposed female rats to the ROFA-induced decrease of cardiac iHSP70 expression. Ovariectomy also decreased the IL-6 levels and IL-6/IL-10 in obese animals, reinforcing a metabolic impairment and a failure to respond to unfavorable conditions. Our results support the hypothesis that obese ovariectomized animals are predisposed to a metabolic worsening under polluted conditions and are at higher risk of cardiovascular diseases.


Assuntos
Dieta Hiperlipídica , Material Particulado , Animais , Dieta Hiperlipídica/efeitos adversos , Feminino , Resposta ao Choque Térmico , Humanos , Ovariectomia , Oxirredução , Estresse Oxidativo , Material Particulado/toxicidade , Ratos , Ratos Wistar
10.
Environ Sci Pollut Res Int ; 27(25): 32006-32016, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32506396

RESUMO

The subchronic exposure to fine particulate matter (PM2.5) and high-fat diet (HFD) consumption lead to glucose intolerance by different mechanisms involving oxidative stress and inflammation. Under stressful conditions, the cells exert a heat shock response (HSR), by releasing the 72-kDa heat shock proteins (eHSP72), fundamental chaperones. The depletion of the HSR can exacerbate the chronic inflammation. However, there are few studies about the early effects of the association of HFD consumption and exposure to low concentrations of PM2.5 in the oxidative stress and HSR, in the genesis of glucose intolerance. Thus, we divided 23 male B6129SF2/J mice into control (n = 6), polluted (n = 6), HFD (n = 6), and high-fat diet + polluted (HFD + polluted) (n = 5) groups. Control and polluted received a standard diet (11.4% of fats), while HFD and HFD + polluted received HFD (58.3% of fats). Simultaneously, polluted and HFD + polluted received 5 µg/10 µL of PM2.5, daily, 7×/week, while control and HFD were exposed to 10 µL of saline solution 0.9% for 12 weeks. At the 12th week, animals were euthanized. We collected the metabolic tissues to analyze oxidative parameters, total blood to the hematological parameters, and plasma to eHSP72 measurement. The association of HFD and PM2.5 impaired glucose tolerance in the 12th week. Besides, it triggered an antioxidant defense by the adipose tissue, which was negatively correlated with eHSP72 levels. In conclusion, a low concentration of PM2.5 exposure associated with HFD consumption leads to glucose intolerance, by impairing adipose tissue antioxidant defense and systemic eHSP72 levels.


Assuntos
Intolerância à Glucose , Resistência à Insulina , Tecido Adiposo , Animais , Antioxidantes , Dieta Hiperlipídica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Material Particulado
11.
Cell Stress Chaperones ; 25(3): 467-479, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32215846

RESUMO

Low estrogen levels may predispose women to increased bodyweight and dyslipidemia. Previous studies from our laboratory suggest an involvement of depressed heat shock response (HSR) in this scenario because estrogen potently stimulates HSR. As heat treatment induces the expression of the anti-inflammatory heat shock proteins of the 70-kDa family (HSP70) and its accompanying HSR, we aimed to investigate whether chronic heat treatment promotes beneficial effects on biometric, lipid profile, oxidative stress, and HSR in ovariectomized rats. Wistar adult female rats (n = 32) were divided into four groups: control (C, n = 7), ovariectomized (OVX, n = 9), heat-treated (HT, n = 9), and heat-treated ovariectomized rats (OVX+HT, n = 7). HT and OVX+HT rats were anesthetized and submitted to heat treatment (once a week for 12 weeks) in a water bath (41 °C) to increase rats' rectal temperature up to 41 °C for 15 min, while C and OVX animals were submitted to a 36 °C water bath. HT attenuated the weight gain induced by OVX and increased HDL cholesterol and triglyceride serum levels. Also, OVX rats showed increased total cholesterol and LDL cholesterol levels that were not influenced by HT. Interestingly, it was found that an overall trend for HT to decrease tissue catalase and superoxide dismutase antioxidant activities was paralleled by a decrease in malondialdehyde levels (indicative of lower lipoperoxidation), especially in the skeletal muscle. Surprisingly, OVX was not able to depress intracellular HSP70 expression in the skeletal muscle, as expected, and this remained unchanged with HT. However, chronic HT did enhance intracellular HSP70 contents in white adipose tissue of OVX animals. As both glucose and insulin tolerance tests were not affected by OVX, which was not modified by HT, we suppose that estrogen absence alone is not sufficient to determine a state of insulin resistance associated with low intramuscular HSP70 content.


Assuntos
Resposta ao Choque Térmico , Tecido Adiposo Branco/metabolismo , Animais , Feminino , Teste de Tolerância a Glucose , Proteínas de Choque Térmico HSP70/sangue , Proteínas de Choque Térmico HSP70/metabolismo , Temperatura Alta , Metabolismo dos Lipídeos , Lipídeos/sangue , Músculos/metabolismo , Ovariectomia , Estresse Oxidativo , Ratos Wistar
12.
Environ Sci Pollut Res Int ; 26(20): 20581-20594, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31104233

RESUMO

The reduction of estrogen levels, as a result of menopause, is associated with the development of metabolic diseases caused by alterations in oxidative stress (OS), inflammatory biomarkers, and 70-kDa heat-shock protein (HSP70) expression. Additionally, exposure to fine particulate matter air pollution modifies liver OS levels and predisposes organisms to metabolic diseases, such as type 2 diabetes (T2DM). We investigated whether ovariectomy affects hepatic tissue and alters glucose metabolism in female rats exposed to particulate air pollution. First, 24 female Wistar rats received an intranasal instillation of saline or particles suspended in saline 5 times per week for 12 weeks. The animals then received either bilateral ovariectomy (OVX) or false surgery (sham) and continued to receive saline or particles for 12 additional weeks, comprising four groups: CTRL, Polluted, OVX, and Polluted+OVX. Ovariectomy increased body weight and adiposity and promoted edema in hepatic tissue, hypercholesterolemia, glucose intolerance, and a pro-inflammatory profile (reduced IL-10 levels and increased IL-6/IL-10 ratio levels), independent of particle exposure. The Polluted+OVX group showed an increase in neutrophils and neutrophil/lymphocyte ratios, decreased antioxidant defense (SOD activity), and increased liver iHSP70 levels. In conclusion, alterations in the reproductive system predispose female organisms to particulate matter air pollution effects by affecting metabolic, oxidative, pro-inflammatory, and heat-shock protein expression.


Assuntos
Proteínas de Choque Térmico HSP70/metabolismo , Inflamação/metabolismo , Ovariectomia/efeitos adversos , Estresse Oxidativo , Material Particulado/toxicidade , Adiposidade/efeitos dos fármacos , Animais , Antioxidantes/metabolismo , Glicemia/metabolismo , Citocinas/metabolismo , Feminino , Fígado/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos Wistar , Aumento de Peso/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA