RESUMO
The aim of the present research was to evaluate the influence of organic and non-organic production systems on color stability and lipid oxidation of broiler meat Pectoralis major (PM) stored under refrigeration (4°C) for 9 days. PM samples from organic (ORG) and non-organic (NORG) production systems were compared based on physicochemical analyses (instrumental color, myoglobin concentration, metmyoglobin reducing activity (MRA), pH, and lipid oxidation) performed in 4 different trials (n = 4). In general, NORG broilers demonstrated higher (P < 0.05) b* and lipid oxidation values than ORG, whereas ORG samples exhibited increased (P < 0.05) MRA, ratio of reflectance at 630 per 580 nanometers (R 630/580), and a* values. The lower color stability observed in NORG samples can be partly due to lipid oxidation. Therefore, the production system can affect color and lipid stability of broiler breast meat during storage.
Assuntos
Criação de Animais Domésticos/métodos , Metabolismo dos Lipídeos , Carne/normas , Agricultura Orgânica , Músculos Peitorais/fisiologia , Animais , Galinhas , Cor , Carne/análise , OxirreduçãoRESUMO
Radiation from UV-C has been demonstrated as a potential surface decontamination method in addition to several advantages over regular sanitation methods. However, UV-C radiation possibly affects the physicochemical properties of meat products. To determine the optimum exposure time for bacterial reduction, 39 chicken breasts, inoculated with a pool of Salmonella spp., were submitted to 3 levels of UV-C intensities (0.62, 1.13, and 1.95 mW/cm²) for up to 120 s. After the optimum exposure time of 90 s was determined, changes in the biogenic amines, total aerobic mesophilic bacteria, Enterobacteriaceae, lipid oxidation, pH, and instrumental color were evaluated in 84 chicken breasts that were irradiated (0.62, 1.13, and 1.95 mW/cm²) and stored at 4°C for 9 d. The groups treated with UV-C radiation exhibited an increase in tyramine, cadaverine, and putrescine contents (P < 0.05). The highest UV-C intensity (1.95 mW/cm²) promoted a decrease in the initial bacterial load, and extended the lag phase and the shelf life. The groups irradiated with 1.13 and 1.95 mW/cm² exhibited a more stable b* value than the other groups; similar trends for L*, a*, pH, and TBA reactive substance values were observed among all groups. The UV-C light was demonstrated to be an efficient alternative technology to improve the bacteriological quality of chicken meat without negatively affecting the physical and chemical parameters of chicken breast meat. Nonetheless, the increases on the biogenic amines content should be considered as an effect of the UV processing and not as an indicator of bacterial growth.