Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Transl Med ; 16(731): eadg4517, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38266105

RESUMO

The human retina is a multilayered tissue that offers a unique window into systemic health. Optical coherence tomography (OCT) is widely used in eye care and allows the noninvasive, rapid capture of retinal anatomy in exquisite detail. We conducted genotypic and phenotypic analyses of retinal layer thicknesses using macular OCT images from 44,823 UK Biobank participants. We performed OCT layer cross-phenotype association analyses (OCT-XWAS), associating retinal thicknesses with 1866 incident conditions (median 10-year follow-up) and 88 quantitative traits and blood biomarkers. We performed genome-wide association studies (GWASs), identifying inherited genetic markers that influence retinal layer thicknesses and replicated our associations among the LIFE-Adult Study (N = 6313). Last, we performed a comparative analysis of phenome- and genome-wide associations to identify putative causal links between retinal layer thicknesses and both ocular and systemic conditions. Independent associations with incident mortality were detected for thinner photoreceptor segments (PSs) and, separately, ganglion cell complex layers. Phenotypic associations were detected between thinner retinal layers and ocular, neuropsychiatric, cardiometabolic, and pulmonary conditions. A GWAS of retinal layer thicknesses yielded 259 unique loci. Consistency between epidemiologic and genetic associations suggested links between a thinner retinal nerve fiber layer with glaucoma, thinner PS with age-related macular degeneration, and poor cardiometabolic and pulmonary function with a thinner PS. In conclusion, we identified multiple inherited genetic loci and acquired systemic cardio-metabolic-pulmonary conditions associated with thinner retinal layers and identify retinal layers wherein thinning is predictive of future ocular and systemic conditions.


Assuntos
Doenças Cardiovasculares , Estudo de Associação Genômica Ampla , Adulto , Humanos , Tomografia de Coerência Óptica , Face , Retina/diagnóstico por imagem
3.
PLoS Biol ; 21(8): e3002233, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37561710

RESUMO

To address the challenge of translating genetic discoveries for type 1 diabetes (T1D) into mechanistic insight, we have developed the T1D Knowledge Portal (T1DKP), an open-access resource for hypothesis development and target discovery in T1D.


Assuntos
Diabetes Mellitus Tipo 1 , Humanos , Diabetes Mellitus Tipo 1/genética , Genômica , Genética Humana
4.
Cell Metab ; 35(4): 695-710.e6, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36963395

RESUMO

Associations between human genetic variation and clinical phenotypes have become a foundation of biomedical research. Most repositories of these data seek to be disease-agnostic and therefore lack disease-focused views. The Type 2 Diabetes Knowledge Portal (T2DKP) is a public resource of genetic datasets and genomic annotations dedicated to type 2 diabetes (T2D) and related traits. Here, we seek to make the T2DKP more accessible to prospective users and more useful to existing users. First, we evaluate the T2DKP's comprehensiveness by comparing its datasets with those of other repositories. Second, we describe how researchers unfamiliar with human genetic data can begin using and correctly interpreting them via the T2DKP. Third, we describe how existing users can extend their current workflows to use the full suite of tools offered by the T2DKP. We finally discuss the lessons offered by the T2DKP toward the goal of democratizing access to complex disease genetic results.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/genética , Acesso à Informação , Estudos Prospectivos , Genômica/métodos , Fenótipo
5.
bioRxiv ; 2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36778413

RESUMO

Translating genetic discoveries for type 1 diabetes (T1D) into mechanistic insight can reveal novel biology and therapeutic targets but remains a major challenge. We developed the T1D Knowledge Portal (T1DKP), a disease-specific resource of genetic and functional annotation data that enables users to develop hypotheses for T1D-based research and target discovery. The T1DKP can be used to query genes and genomic regions for genetic associations, identify epigenomic features, access results of bioinformatic analyses, and obtain expert-curated resources. The T1DKP is available at http://t1d.hugeamp.org .

6.
Dev Cell ; 57(3): 387-397.e4, 2022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-35134345

RESUMO

Lipid droplets (LDs) are organelles of cellular lipid storage with fundamental roles in energy metabolism and cell membrane homeostasis. There has been an explosion of research into the biology of LDs, in part due to their relevance in diseases of lipid storage, such as atherosclerosis, obesity, type 2 diabetes, and hepatic steatosis. Consequently, there is an increasing need for a resource that combines datasets from systematic analyses of LD biology. Here, we integrate high-confidence, systematically generated human, mouse, and fly data from studies on LDs in the framework of an online platform named the "Lipid Droplet Knowledge Portal" (https://lipiddroplet.org/). This scalable and interactive portal includes comprehensive datasets, across a variety of cell types, for LD biology, including transcriptional profiles of induced lipid storage, organellar proteomics, genome-wide screen phenotypes, and ties to human genetics. This resource is a powerful platform that can be utilized to identify determinants of lipid storage.


Assuntos
Bases de Dados como Assunto , Gotículas Lipídicas/metabolismo , Animais , Ésteres do Colesterol/metabolismo , Mineração de Dados , Genoma , Humanos , Inflamação/patologia , Metabolismo dos Lipídeos , Fígado/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Fenótipo , Fosforilação , Interferência de RNA
8.
Artigo em Inglês | MEDLINE | ID: mdl-27252399

RESUMO

The Saccharomyces Genome Database (SGD; http://www.yeastgenome.org/) is the authoritative community resource for the Saccharomyces cerevisiae reference genome sequence and its annotation. To provide a wider scope of genetic and phenotypic variation in yeast, the genome sequences and their corresponding annotations from 11 alternative S. cerevisiae reference strains have been integrated into SGD. Genomic and protein sequence information for genes from these strains are now available on the Sequence and Protein tab of the corresponding Locus Summary pages. We illustrate how these genome sequences can be utilized to aid our understanding of strain-specific functional and phenotypic differences.Database URL: www.yeastgenome.org.


Assuntos
Bases de Dados Genéticas , Genoma Fúngico/genética , Genômica/métodos , Saccharomyces/genética , Anotação de Sequência Molecular , Reprodutibilidade dos Testes , Saccharomyces cerevisiae/genética , Interface Usuário-Computador
9.
Nucleic Acids Res ; 44(D1): D698-702, 2016 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-26578556

RESUMO

The Saccharomyces Genome Database (SGD; http://www.yeastgenome.org) is the authoritative community resource for the Saccharomyces cerevisiae reference genome sequence and its annotation. In recent years, we have moved toward increased representation of sequence variation and allelic differences within S. cerevisiae. The publication of numerous additional genomes has motivated the creation of new tools for their annotation and analysis. Here we present the Variant Viewer: a dynamic open-source web application for the visualization of genomic and proteomic differences. Multiple sequence alignments have been constructed across high quality genome sequences from 11 different S. cerevisiae strains and stored in the SGD. The alignments and summaries are encoded in JSON and used to create a two-tiered dynamic view of the budding yeast pan-genome, available at http://www.yeastgenome.org/variant-viewer.


Assuntos
Bases de Dados Genéticas , Variação Genética , Genoma Fúngico , Saccharomyces cerevisiae/genética , Anotação de Sequência Molecular , Alinhamento de Sequência , Análise de Sequência de DNA , Análise de Sequência de Proteína , Interface Usuário-Computador
10.
Nucleic Acids Res ; 43(Database issue): D479-84, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25313161

RESUMO

The IntAct molecular interaction database has created a new, free, open-source, manually curated resource, the Complex Portal (www.ebi.ac.uk/intact/complex), through which protein complexes from major model organisms are being collated and made available for search, viewing and download. It has been built in close collaboration with other bioinformatics services and populated with data from ChEMBL, MatrixDB, PDBe, Reactome and UniProtKB. Each entry contains information about the participating molecules (including small molecules and nucleic acids), their stoichiometry, topology and structural assembly. Complexes are annotated with details about their function, properties and complex-specific Gene Ontology (GO) terms. Consistent nomenclature is used throughout the resource with systematic names, recommended names and a list of synonyms all provided. The use of the Evidence Code Ontology allows us to indicate for which entries direct experimental evidence is available or if the complex has been inferred based on homology or orthology. The data are searchable using standard identifiers, such as UniProt, ChEBI and GO IDs, protein, gene and complex names or synonyms. This reference resource will be maintained and grow to encompass an increasing number of organisms. Input from groups and individuals with specific areas of expertise is welcome.


Assuntos
Bases de Dados de Proteínas , Proteínas/química , Animais , Sítios de Ligação , Humanos , Internet , Substâncias Macromoleculares/química , Camundongos , Ligação Proteica , Proteínas/genética , Proteínas/metabolismo
11.
G3 (Bethesda) ; 4(3): 389-98, 2014 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-24374639

RESUMO

The genome of the budding yeast Saccharomyces cerevisiae was the first completely sequenced from a eukaryote. It was released in 1996 as the work of a worldwide effort of hundreds of researchers. In the time since, the yeast genome has been intensively studied by geneticists, molecular biologists, and computational scientists all over the world. Maintenance and annotation of the genome sequence have long been provided by the Saccharomyces Genome Database, one of the original model organism databases. To deepen our understanding of the eukaryotic genome, the S. cerevisiae strain S288C reference genome sequence was updated recently in its first major update since 1996. The new version, called "S288C 2010," was determined from a single yeast colony using modern sequencing technologies and serves as the anchor for further innovations in yeast genomic science.


Assuntos
Genoma Fúngico , Saccharomyces cerevisiae/genética , Mapeamento Cromossômico , Bases de Dados Factuais , Internet , Fases de Leitura Aberta , Análise de Sequência de DNA , Interface Usuário-Computador
12.
Nucleic Acids Res ; 42(Database issue): D717-25, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24265222

RESUMO

The Saccharomyces Genome Database (SGD; http://www.yeastgenome.org) is the community resource for genomic, gene and protein information about the budding yeast Saccharomyces cerevisiae, containing a variety of functional information about each yeast gene and gene product. We have recently added regulatory information to SGD and present it on a new tabbed section of the Locus Summary entitled 'Regulation'. We are compiling transcriptional regulator-target gene relationships, which are curated from the literature at SGD or imported, with permission, from the YEASTRACT database. For nearly every S. cerevisiae gene, the Regulation page displays a table of annotations showing the regulators of that gene, and a graphical visualization of its regulatory network. For genes whose products act as transcription factors, the Regulation page also shows a table of their target genes, accompanied by a Gene Ontology enrichment analysis of the biological processes in which those genes participate. We additionally synthesize information from the literature for each transcription factor in a free-text Regulation Summary, and provide other information relevant to its regulatory function, such as DNA binding site motifs and protein domains. All of the regulation data are available for querying, analysis and download via YeastMine, the InterMine-based data warehouse system in use at SGD.


Assuntos
Bases de Dados Genéticas , Regulação Fúngica da Expressão Gênica , Genoma Fúngico , Saccharomyces cerevisiae/genética , Sítios de Ligação , Redes Reguladoras de Genes , Internet , Estrutura Terciária de Proteína , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Transcrição Gênica
13.
SAGE Open Med Case Rep ; 2: 2050313X14561778, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-27489668

RESUMO

Obsessive-compulsive disorder is a chronic and disabling condition that often proves to be treatment resistant. Of the patients suffering from obsessive-compulsive disorder, 10%-27% may attempt suicide at least once in their life. We report the case of a patient who presented severe obsessive-compulsive disorder symptoms and attempted suicide ingesting 25 tablets of fluoxetine (20 mg). The patient was treated with venlafaxine and agomelatine and showed improvement of obsessive symptoms and suicidal ideation. Future studies are needed to investigate this treatment regime in large cohorts of obsessive-compulsive disorder patients with suicidal ideation.

14.
BMJ Case Rep ; 20132013 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-24049088

RESUMO

In the last few years, dopamine agonists (DA) have been used as first-line treatment for restless legs syndrome (RLS), a disabling sensorimotor disorder. Only recently have they reported some possible iatrogenic side effects, as shown below. The following case presents a RLS patient who developed hallucinatory and delusional symptoms with paranoid ideation after pramipexole assumption; these symptoms gradually decreased after pramipexole suspension and treatment by an oral antipsychotic therapy (quetiapine XR). Correlation between DAs assumption and psychotic symptoms is still not clear. The development of these side effects might be related to many risk factors such as genetic susceptibility, premorbid personality and psychosocial stressor; in order to minimise the risk of iatrogenic psychosis it could be useful to assess patients' vulnerability factors selecting an alternative medication regime.


Assuntos
Benzotiazóis/efeitos adversos , Agonistas de Dopamina/efeitos adversos , Psicoses Induzidas por Substâncias/etiologia , Síndrome das Pernas Inquietas/tratamento farmacológico , Humanos , Masculino , Pessoa de Meia-Idade , Pramipexol
15.
Database (Oxford) ; 2012: bas001, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22434836

RESUMO

The set of annotations at the Saccharomyces Genome Database (SGD) that classifies the cellular function of S. cerevisiae gene products using Gene Ontology (GO) terms has become an important resource for facilitating experimental analysis. In addition to capturing and summarizing experimental results, the structured nature of GO annotations allows for functional comparison across organisms as well as propagation of functional predictions between related gene products. Due to their relevance to many areas of research, ensuring the accuracy and quality of these annotations is a priority at SGD. GO annotations are assigned either manually, by biocurators extracting experimental evidence from the scientific literature, or through automated methods that leverage computational algorithms to predict functional information. Here, we discuss the relationship between literature-based and computationally predicted GO annotations in SGD and extend a strategy whereby comparison of these two types of annotation identifies genes whose annotations need review. Our method, CvManGO (Computational versus Manual GO annotations), pairs literature-based GO annotations with computational GO predictions and evaluates the relationship of the two terms within GO, looking for instances of discrepancy. We found that this method will identify genes that require annotation updates, taking an important step towards finding ways to prioritize literature review. Additionally, we explored factors that may influence the effectiveness of CvManGO in identifying relevant gene targets to find in particular those genes that are missing literature-supported annotations, but our survey found that there are no immediately identifiable criteria by which one could enrich for these under-annotated genes. Finally, we discuss possible ways to improve this strategy, and the applicability of this method to other projects that use the GO for curation. DATABASE URL: http://www.yeastgenome.org.


Assuntos
Bases de Dados Genéticas , Anotação de Sequência Molecular/métodos , Software , Vocabulário Controlado , Biologia Computacional , Genes Fúngicos , Genoma Fúngico , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/classificação , Proteínas de Saccharomyces cerevisiae/genética
16.
Nucleic Acids Res ; 40(Database issue): D700-5, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22110037

RESUMO

The Saccharomyces Genome Database (SGD, http://www.yeastgenome.org) is the community resource for the budding yeast Saccharomyces cerevisiae. The SGD project provides the highest-quality manually curated information from peer-reviewed literature. The experimental results reported in the literature are extracted and integrated within a well-developed database. These data are combined with quality high-throughput results and provided through Locus Summary pages, a powerful query engine and rich genome browser. The acquisition, integration and retrieval of these data allow SGD to facilitate experimental design and analysis by providing an encyclopedia of the yeast genome, its chromosomal features, their functions and interactions. Public access to these data is provided to researchers and educators via web pages designed for optimal ease of use.


Assuntos
Bases de Dados Genéticas , Genoma Fúngico , Saccharomyces cerevisiae/genética , Genes Fúngicos , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Anotação de Sequência Molecular , Fenótipo , Software , Terminologia como Assunto
17.
Database (Oxford) ; 2011: bar004, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21411447

RESUMO

Annotation using Gene Ontology (GO) terms is one of the most important ways in which biological information about specific gene products can be expressed in a searchable, computable form that may be compared across genomes and organisms. Because literature-based GO annotations are often used to propagate functional predictions between related proteins, their accuracy is critically important. We present a strategy that employs a comparison of literature-based annotations with computational predictions to identify and prioritize genes whose annotations need review. Using this method, we show that comparison of manually assigned 'unknown' annotations in the Saccharomyces Genome Database (SGD) with InterPro-based predictions can identify annotations that need to be updated. A survey of literature-based annotations and computational predictions made by the Gene Ontology Annotation (GOA) project at the European Bioinformatics Institute (EBI) across several other databases shows that this comparison strategy could be used to maintain and improve the quality of GO annotations for other organisms besides yeast. The survey also shows that although GOA-assigned predictions are the most comprehensive source of functional information for many genomes, a large proportion of genes in a variety of different organisms entirely lack these predictions but do have manual annotations. This underscores the critical need for manually performed, literature-based curation to provide functional information about genes that are outside the scope of widely used computational methods. Thus, the combination of manual and computational methods is essential to provide the most accurate and complete functional annotation of a genome. Database URL: http://www.yeastgenome.org.


Assuntos
Bibliografias como Assunto , Biologia Computacional/métodos , Anotação de Sequência Molecular/métodos , Saccharomyces cerevisiae/genética , Bases de Dados Genéticas , Estudos de Viabilidade , Genoma Fúngico/genética , Software
18.
Nucleic Acids Res ; 38(Database issue): D428-32, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19808938

RESUMO

The Candida Genome Database (CGD, http://www.candidagenome.org/) provides online access to genomic sequence data and manually curated functional information about genes and proteins of the human pathogen Candida albicans. Herein, we describe two recently added features, Candida Biochemical Pathways and the Textpresso full-text literature search tool. The Biochemical Pathways tool provides visualization of metabolic pathways and analysis tools that facilitate interpretation of experimental data, including results of large-scale experiments, in the context of Candida metabolism. Textpresso for Candida allows searching through the full-text of Candida-specific literature, including clinical and epidemiological studies.


Assuntos
Candida albicans/genética , Biologia Computacional/métodos , Bases de Dados Genéticas , Bases de Dados de Ácidos Nucleicos , Genoma Fúngico , Biologia Computacional/tendências , DNA Fúngico/genética , Bases de Dados de Proteínas , Genes Fúngicos , Armazenamento e Recuperação da Informação/métodos , Internet , Fases de Leitura Aberta , Estrutura Terciária de Proteína , Software , Interface Usuário-Computador
19.
Nucleic Acids Res ; 38(Database issue): D420-7, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19773420

RESUMO

The Aspergillus Genome Database (AspGD) is an online genomics resource for researchers studying the genetics and molecular biology of the Aspergilli. AspGD combines high-quality manual curation of the experimental scientific literature examining the genetics and molecular biology of Aspergilli, cutting-edge comparative genomics approaches to iteratively refine and improve structural gene annotations across multiple Aspergillus species, and web-based research tools for accessing and exploring the data. All of these data are freely available at http://www.aspgd.org. We welcome feedback from users and the research community at aspergillus-curator@genome.stanford.edu.


Assuntos
Aspergillus nidulans/genética , Biologia Computacional/métodos , Bases de Dados Genéticas , Bases de Dados de Ácidos Nucleicos , Genoma Fúngico , Biologia Computacional/tendências , Bases de Dados de Proteínas , Proteínas Fúngicas/metabolismo , Genes Fúngicos , Genética , Armazenamento e Recuperação da Informação/métodos , Internet , Modelos Genéticos , Fenótipo , Estrutura Terciária de Proteína , Software
20.
Nucleic Acids Res ; 38(Database issue): D433-6, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19906697

RESUMO

The Saccharomyces Genome Database (SGD; http://www.yeastgenome.org) is a scientific database for the molecular biology and genetics of the yeast Saccharomyces cerevisiae, which is commonly known as baker's or budding yeast. The information in SGD includes functional annotations, mapping and sequence information, protein domains and structure, expression data, mutant phenotypes, physical and genetic interactions and the primary literature from which these data are derived. Here we describe how published phenotypes and genetic interaction data are annotated and displayed in SGD.


Assuntos
Biologia Computacional/métodos , Bases de Dados de Ácidos Nucleicos , Genoma Fúngico , Mutação , Saccharomyces cerevisiae/genética , Biologia Computacional/tendências , DNA Fúngico , Bases de Dados Genéticas , Bases de Dados de Proteínas , Genes Fúngicos , Armazenamento e Recuperação da Informação/métodos , Internet , Fenótipo , Estrutura Terciária de Proteína , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA