Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Lab Chip ; 24(2): 234-243, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-38050677

RESUMO

Surface charge is a critical feature of microbes that affects their interactions with other cells and their environment. Because bacterial surface charge is difficult to measure directly, it is typically indirectly inferred through zeta potential measurements. Existing tools to perform such characterization are either costly and ill-suited for non-spherical samples or rely on microfluidic techniques requiring expensive fabrication equipment or specialized facilities. Here, we report the application of commercially available PMMA microfluidic chips and open-source data analysis workflows for facile electrokinetic characterization of particles and cells after prior zeta potential measurement with a Zetasizer for calibration. Our workflows eliminate the need for microchannel fabrication, increase measurement reproducibility, and make zeta potential measurements more accessible. This novel methodology was tested with functionalized 1 µm and 2 µm polystyrene beads as well as Escherichia coli MG1655 strain. Measured zeta potentials for these samples were in agreement with literature values obtained by conventional measurement methods. Taken together, our data demonstrate the power of this workflow to broadly enable critical measurements of particle and bacterial zeta potential for numerous applications.


Assuntos
Técnicas Analíticas Microfluídicas , Microfluídica , Reprodutibilidade dos Testes , Poliestirenos
2.
ACS Appl Bio Mater ; 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35535998

RESUMO

Polyphenols are naturally derived organic compounds that have long been used as food additives, antioxidants, and adhesives owing to their intrinsic physicochemical properties. Recently, there has been growing interest in the fabrication of coordination networks based on the self-assembly of polyphenols and metal ions, termed metal-phenolic networks (MPNs), for multiple biological applications including bioimaging, drug delivery, and cell encapsulation. The as-synthesized MPN complexes feature pH responsiveness, controllable size and rigidity, and tunable permeability based on the choice of polyphenol-metal ion pairs. The aim of this Review is to introduce the physicochemical properties of MPNs, highlight their recent biological applications in cancer theranostics and single-cell encapsulation, and discuss the future utility of MPNs for biomedical applications.

3.
Mol Syst Biol ; 18(3): e10785, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35315586

RESUMO

Living materials combine a material scaffold, that is often porous, with engineered cells that perform sensing, computing, and biosynthetic tasks. Designing such systems is difficult because little is known regarding signaling transport parameters in the material. Here, the development of a porous microplate is presented. Hydrogel barriers between wells have a porosity of 60% and a tortuosity factor of 1.6, allowing molecular diffusion between wells. The permeability of dyes, antibiotics, inducers, and quorum signals between wells were characterized. A "sentinel" strain was constructed by introducing orthogonal sensors into the genome of Escherichia coli MG1655 for IPTG, anhydrotetracycline, L-arabinose, and four quorum signals. The strain's response to inducer diffusion through the wells was quantified up to 14 mm, and quorum and antibacterial signaling were measured over 16 h. Signaling distance is dictated by hydrogel adsorption, quantified using a linear finite element model that yields adsorption coefficients from 0 to 0.1 mol m-3 . Parameters derived herein will aid the design of living materials for pathogen remediation, computation, and self-organizing biofilms.


Assuntos
Escherichia coli , Percepção de Quorum , Escherichia coli/genética , Hidrogéis , Porosidade , Transdução de Sinais
4.
Lab Chip ; 21(19): 3686-3694, 2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34518854

RESUMO

We present a novel concept for the controlled trapping and releasing of beads and cells in a PDMS microfluidic channel without obstacles present around the particle or in the channel. The trapping principle relies on a two-level microfluidic configuration: a top main PDMS channel interconnected to a buried glass microchannel using round vias. As the fluidic resistances rule the way the liquid flows inside the channels, particles located in the streamlines passing inside the buried level are immobilized by the round via with a smaller diameter, leaving the object motionless in the upper PDMS channel. The particle is maintained by the difference of pressure established across its interface and acts as an infinite fluidic resistance, virtually cancelling the subsequent buried fluidic path. The pressure is controlled at the outlet of the buried path and three modes of operation of a trap are defined: idle, trapping and releasing. The pressure conditions for each mode are defined based on the hydraulic-electrical circuit equivalence. The trapping of polystyrene beads in a compact array of 522 parallel traps controlled by a single pressure was demonstrated with a trapping efficiency of 94%. Pressure conditions necessary to safely trap cells in holes of different diameters were determined and demonstrated in an array of 25 traps, establishing the design and operation rules for the use of planar hydrodynamic traps for biological assays.


Assuntos
Hidrodinâmica , Técnicas Analíticas Microfluídicas , Eletricidade , Microfluídica , Poliestirenos
5.
Lab Chip ; 20(20): 3665-3689, 2020 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-32914827

RESUMO

Microfluidic electrical impedance flow cytometry is now a well-known and established method for single-cell analysis. Given the richness of the information provided by impedance measurements, this non-invasive and label-free approach can be used in a wide field of applications ranging from simple cell counting to disease diagnostics. One of its major limitations is the variation of the impedance signal with the position of the cell in the sensing area. Indeed, identical particles traveling along different trajectories do not result in the same data. The positional dependence can be considered as a challenge for the accuracy of microfluidic impedance cytometers. On the other hand, it has recently been regarded by several groups as an opportunity to estimate the position of particles in the microchannel and thus take a further step in the logic of integrating sensors in so-called "Lab-on-a-chip" devices. This review provides a comprehensive overview of the physical grounds of the positional dependence of impedance measurements. Then, both the developed strategies to reduce position influence in impedance-based assays and the recent reported technologies exploiting that dependence for the integration of position detection in microfluidic devices are reviewed.


Assuntos
Técnicas Analíticas Microfluídicas , Microfluídica , Impedância Elétrica , Citometria de Fluxo , Dispositivos Lab-On-A-Chip , Análise de Célula Única
6.
Electrophoresis ; 40(10): 1498-1509, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30706961

RESUMO

We present a microfluidic platform allowing dielectrophoresis-assisted formation of cell aggregates of controlled size and composition under flow conditions. When specific experimental conditions are met, negative dielectrophoresis allows efficient concentration of cells towards electric field minima and subsequent aggregation. This bottom-up assembly strategy offers several advantages with respect to the targeted application: first, dielectrophoresis offers precise control of spatial cell organization, which can be adjusted by optimizing electrode design. Then, it could contribute to accelerate the establishment of cell-cell interactions by favoring close contact between neighboring cells. The trapping geometry of our chip is composed of eight electrodes arranged in a circle. Several parameters have been tested in simulations to find the best configurations for trapping in flow. Those configurations have been tested experimentally with both polystyrene beads and human embryonic kidney cells. The final design and experimental setup have been optimized to trap cells and release the created aggregates on demand.


Assuntos
Comunicação Celular , Eletroforese/instrumentação , Eletroforese/métodos , Agregação Celular , Linhagem Celular , Eletrodos , Desenho de Equipamento , Humanos , Rim/citologia , Rim/embriologia , Dispositivos Lab-On-A-Chip , Poliestirenos
7.
Biophys J ; 116(1): 12-18, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30558882

RESUMO

Dielectrophoresis (DEP) and electrorotation (ROT) are two electrokinetic phenomena exploiting nonuniform electric fields to exert a force or torque on biological particles suspended in liquid media. They are widely used in lab-on-chip devices for the manipulation, trapping, separation, and characterization of cells, microorganisms, and other particles. The DEP force and ROT torque depend on the respective polarizabilities of the particle and medium, which in turn depend on their dielectric properties and on the field frequency. In this work, we present a new software, MyDEP, which implements several particle models based on concentric shells with adjustable dielectric properties. This tool enables the study of the variation in DEP and ROT spectra according to different parameters, such as the field frequency and medium conductivity. Such predictions of particle behavior are very useful for choosing appropriate parameters in DEP experiments. The software also enables the study of the homogenized properties of spherical or ellipsoidal multishell particles and provides a database containing published cell properties. Equivalent electrical conductivity and relative permittivity of the cell alone and in suspension can be calculated. The software also offers the ability to create graphs of the evolution of the crossover frequencies with the electric field frequency. These graphs can be directly exported from the software.


Assuntos
Separação Celular/métodos , Impedância Elétrica , Eletroforese/métodos , Software , Células HEK293 , Humanos , Células MCF-7 , Nanopartículas/química , Material Particulado/química , Torque
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA