RESUMO
STUDY QUESTION: What is the frequency of PLCZ1, ACTL7A, and ACTL9 variants in male patients showing fertilization failure after ICSI, and how effective is assisted oocyte activation (AOA) for them? SUMMARY ANSWER: Male patients with fertilization failure after ICSI manifest variants in PLCZ1 (29.09%), ACTL7A (14.81%), and ACTL9 (3.70%), which can be efficiently overcome by AOA treatment with ionomycin. WHAT IS KNOWN ALREADY: Genetic variants in PLCZ1, and more recently, in ACTL7A, and ACTL9 male genes, have been associated with total fertilization failure or low fertilization after ICSI. A larger patient cohort is required to understand the frequency at which these variants occur, and to assess their effect on the calcium ion (Ca2+) release during oocyte activation. AOA, using ionomycin, can restore fertilization and pregnancy rates in patients with PLCZ1 variants, but it remains unknown how efficient this is for patients with ACTL7A and ACTL9 variants. STUDY DESIGN SIZE DURATION: This prospective study involved two patient cohorts. In the first setting, group 1 (N = 28, 2006-2020) underwent only PLCZ1 genetic screening, while group 2 (N = 27, 2020-2023) underwent PLCZ1, ACTL7A, and ACTL9 genetic screening. Patients were only recruited when they had a mean fertilization rate of ≤33.33% in at least one ICSI cycle with at least four MII oocytes. Patients underwent a mouse oocyte activation test (MOAT) and at least one ICSI-AOA cycle using calcium chloride (CaCl2) injection and double ionomycin exposure at our centre. All patients donated a saliva sample for genetic screening and a sperm sample for further diagnostic tests, including Ca2+ imaging. PARTICIPANTS/MATERIALS SETTING METHODS: Genetic screening was performed via targeted next-generation sequencing. Identified variants were classified by applying the revised ACMG guidelines into a Bayesian framework and were confirmed by bidirectional Sanger sequencing. If variants of uncertain significance or likely pathogenic or pathogenic variants were found, patients underwent additional determination of the sperm Ca2+-releasing pattern in mouse (MOCA) and in IVM human (HOCA) oocytes. Additionally, ACTL7A immunofluorescence and acrosome ultrastructure analyses by transmission electron microscopy (TEM) were performed for patients with ACTL7A and/or ACTL9 variants. MAIN RESULTS AND THE ROLE OF CHANCE: Overall, the frequency rate of PLCZ1 variants was 29.09%. Moreover, 14.81% of patients carried ACTL7A variants and 3.70% carried ACTL9 variants. Seven different PLCZ1 variants were identified (p.Ile74Thr, p.Gln94*, p.Arg141His, p.His233Leu, p.Lys322*, p.Ile379Thr, and p.Ser500Leu), five of which are novel. Interestingly, PLCZ1 variants p.Ser500Leu and p.His233Leu occurred in 14.55% and 9.09% of cases. Five different variants were found in ACTL7A (p.Tyr183His, p.Gly214Ser, p.Val340Met, p.Ser364Glnfs*9, p.Arg373Cys), four of them being identified for the first time. A novel variant in ACTL9 (p.Arg271Pro) was also described. Notably, both heterozygous and homozygous variants were identified.The MOCA and HOCA tests revealed abnormal or absent Ca2+ release during fertilization in all except one patient, including patients with PLCZ1 heterozygous variants. TEM analysis revealed abnormal acrosome ultrastructure in three patients with ACTL7A variants, but only patients with homozygous ACTL7A variants showed reduced fluorescence intensity in comparison to the control.AOA treatment significantly increased the fertilization rate in the 19 patients with detected variants (from 11.24% after conventional ICSI to 61.80% after ICSI-AOA), as well as positive hCG rate (from 10.64% to 60.00%) and live birth rate (from 6.38% to 37.14%), resulting in 13 healthy newborns. In particular, four live births and two ongoing pregnancies were produced using sperm from patients with ACTL7A variants. LIMITATIONS REASONS FOR CAUTION: Genetic screening included exonic and outflanking intronic regions, which implies that deep intronic variants were missed. In addition, other male genes or possible female-related factors affecting the fertilization process remain to be investigated. WIDER IMPLICATIONS OF THE FINDINGS: Genetic screening of PLCZ1, ACTL7A, and ACTL9 offers a fast, cost-efficient, and easily implementable diagnostic test for total fertilization failure or low fertilization after ICSI, eliminating the need for complex diagnostic tests like MOAT or Ca2+ analysis. Nonetheless, HOCA remains the most sensitive functional test to reveal causality of uncertain significance variants. Interestingly, heterozygous PLCZ1 variants are sufficient to cause inadequate Ca2+ release during ICSI. Most importantly, AOA treatment using CaCl2 injection followed by double ionomycin exposure is highly effective for this patient group, including those with ACTL7A variants, who also display a Ca2+-release deficiency. STUDY FUNDING/COMPETING INTERESTS: This study was supported by the Flemish Fund for Scientific Research (FWO) (TBM-project grant T002223N awarded to B.H.) and by the Special Research Fund (BOF) (starting grant BOF.STG.2021.0042.01 awarded to B.H.). A.C.B., R.R.G., C.C., E.V.D.V., A.R., D.S., L.L., P.C., S.S., A.B., and F.V.M. have nothing to disclose. B.H. reports a research grant from FWO and BOF, and reports being a board member of the Belgian Ethical Committee on embryo research. TRIAL REGISTRATION NUMBER: N/A.
RESUMO
Arrhythmogenic cardiomyopathy is a severe genetic heart muscle disease characterized by fibro-fatty replacement of the myocardium. Pathogenic variants causal for this disease are mainly located in desmosomal genes, including desmoplakin (DSP). Renal epithelial cells were isolated from a patient carrying the heterozygous c.817C>T (p.Q273*, nonsense) pathogenic variant in DSP, and subsequently reprogrammed using the Cytotune®-iPS 2.0 Sendai Reprogramming Kit. An isogenic control line was generated using CRISPR/Cas9 genome editing. The resulting induced pluripotent stem cell lines were characterized and displayed the required traits for in vitro disease modeling.
RESUMO
Germline mosaicism in autosomal recessive disorders is considered a rare disease mechanism with important consequences for diagnosis and patient counseling. In this report, we present two families with PXE in which paternal germline mosaicism for an ABCC6 whole-gene deletion was observed. The first family further illustrates the clinical challenges in PXE, with a typical PXE retinopathy in an apparently heterozygous carrier parent. A systematic review of the literature on gonadal mosaicism in autosomal recessive genodermatoses revealed 16 additional patients. As in most reported families, segregation analysis data are not mentioned, and this may still be an underrepresentation. Though rare, the possibility of germline mosaicism emphasizes the need for variant verification in parents and sibs of a newly diagnosed proband, as it has significant implications for genetic counseling and management.
RESUMO
Marfan syndrome is a rare connective tissue disorder that causes aortic dissection-related sudden death. Current conventional treatments, beta-blockers, and type 1 angiotensin II receptor blockers are prescribed to slow down aortic aneurysm progression and delay (prophylactic) aortic surgery. However, neither of these treatments ceases aortic growth completely. This review focuses on potential alternative therapeutic leads in the field, ranging from widely used medication with beneficial effects on the aorta to experimental inhibitors with the potential to stop aortic growth in Marfan syndrome. Clinical trials are warranted to uncover their full potential.
Assuntos
Síndrome de Marfan , Síndrome de Marfan/tratamento farmacológico , Humanos , Animais , Doenças da Aorta/tratamento farmacológico , Doenças da Aorta/etiologia , Aneurisma AórticoRESUMO
Rapidly evolving genomic technologies have made genetic expanded carrier screening (ECS) possible for couples considering a pregnancy. The aim of ECS is to identify couples at risk of having a child affected with a severe disorder and to facilitate their reproductive decision-making process. The ECS test we offer at our center, called BeGECS (Belgian Genetic ECS), consists of 1268 autosomal recessive (AR) and X-linked pathogenic genes, including severe childhood-onset disorders. However, thus far data are scarce regarding the actual uptake of preconception ECS in a clinical setting. Therefore, our aim was to describe the characteristics of 407 couples to whom ECS was offered at the Center for Medical Genetics of the University Hospital Ghent (CMGG). In addition, we aimed to identify their reasons for accepting or declining BeGECS. Between October 2019 and January 2023, 407 preconception couples were offered BeGECS and were asked to fill in a questionnaire after their decision. Of the 407 couples participating in the survey, 270 (66%) decided to take the test and 137 (34%) declined. We observed that age, highest education level as well as indication for consultation were statistically different between the group that accepted to take the test and the group that declined (p = 0.037). In particular, age and education level were substantially higher in the group that accepted the test. Major reasons for taking BeGECS include prevention, wishing to obtain all information possible, helping preparing their future reproductive decision and increasing their sense of control by being informed. However, couples that do not chose to take BeGECS stated that too much information would make them anxious, that the result would not change their decision to have children, that they do not want to spend money on something that will not happen and that they do not worry about their family history. These findings show that the majority of preconception couples that were offered ECS, accepted the test.
RESUMO
INTRODUCTION: Counseling osteogenesis imperfecta (OI) pregnancies is challenging due to the wide range of onsets and clinical severities, from perinatal lethality to milder forms detected later in life. METHODS: Thirty-eight individuals from 36 families were diagnosed with OI through prenatal ultrasonography and/or postmortem clinical and radiographic findings. Genetic analysis was conducted on 26 genes associated with OI in these subjects that emerged over the past 20 years; while some genes were examined progressively, all 26 genes were examined in the group where no pathogenic variations were detected. RESULTS: Prenatal and postnatal observations both consistently showed short limbs in 97%, followed by bowing of the long bones in 89%. Among 32 evaluated cases, all exhibited cranial hypomineralization. Fractures were found in 29 (76%) cases, with multiple bones involved in 18 of them. Genetic associations were disclosed in 27 families with 22 (81%) autosomal dominant and five (19%) autosomal recessive forms, revealing 25 variants in six genes (COL1A1, COL1A2, CREB3L1, P3H1, FKBP10, and IFITM5), including nine novels. Postmortem radiological examination showed variability in intrafamily expression of CREBL3- and P3H1-related OI. CONCLUSION: Prenatal diagnosis for distinguishing OI and its subtypes relies on factors such as family history, timing, ultrasound, genetics, and postmortem evaluation.
Assuntos
Osteogênese Imperfeita , Humanos , Osteogênese Imperfeita/genética , Osteogênese Imperfeita/diagnóstico por imagem , Feminino , Gravidez , Ultrassonografia Pré-Natal , Cadeia alfa 1 do Colágeno Tipo I , Proteínas de Ligação a Tacrolimo/genética , Masculino , Colágeno Tipo I/genética , Autopsia , Prolil Hidroxilases/genética , Adulto , Glicoproteínas de Membrana , Proteínas de Membrana , ProteoglicanasRESUMO
SNARE proteins comprise a conserved protein family responsible for catalyzing membrane fusion during vesicle traffic. Syntaxin18 (STX18) is a poorly characterized endoplasmic reticulum (ER)-resident t-SNARE. Recently, together with TANGO1 and SLY1, its involvement was shown in ER to Golgi transport of collagen II during chondrogenesis. We report a fetus with a severe osteochondrodysplasia in whom we identified a homozygous substitution of the highly conserved p.Arg10 to Pro of STX18. CRISPR/Cas9-mediated Stx18 deficiency in zebrafish reveals a crucial role for Stx18 in cartilage and bone development. Furthermore, increased expression of multiple components of the Stx18 SNARE complex and of COPI and COPII proteins suggests that Stx18 deficiency impairs antero- and retrograde vesicular transport in the crispant stx18 zebrafish. Taken together, our studies highlight a new candidate gene for a recessive form of osteochondrodysplasia, thereby possibly broadening the SNAREopathy phenotypic spectrum and opening new doors toward future research avenues. © 2023 American Society for Bone and Mineral Research (ASBMR).
Assuntos
Osteocondrodisplasias , Peixe-Zebra , Animais , Humanos , Proteínas Qa-SNARE/genética , Proteínas Qa-SNARE/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Osteocondrodisplasias/metabolismo , Complexo de Golgi/metabolismo , Cartilagem/metabolismo , Desenvolvimento Ósseo , Transporte ProteicoRESUMO
Human germline gene correction by targeted nucleases holds great promise for reducing mutation transmission. However, recent studies have reported concerning observations in CRISPR-Cas9-targeted human embryos, including mosaicism and loss of heterozygosity (LOH). The latter has been associated with either gene conversion or (partial) chromosome loss events. In this study, we aimed to correct a heterozygous basepair substitution in PLCZ1, related to infertility. In 36% of the targeted embryos that originated from mutant sperm, only wild-type alleles were observed. By performing genome-wide double-digest restriction site-associated DNA sequencing, integrity of the targeted chromosome (i.e., no deletions larger than 3 Mb or chromosome loss) was confirmed in all seven targeted GENType-analyzed embryos (mutant editing and absence of mutation), while short-range LOH events (shorter than 10 Mb) were clearly observed by single-nucleotide polymorphism assessment in two of these embryos. These results fuel the currently ongoing discussion on double-strand break repair in early human embryos, making a case for the occurrence of gene conversion events or partial template-based homology-directed repair.
Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Humanos , Masculino , Edição de Genes/métodos , Sêmen , Mutação , Alelos , CromossomosRESUMO
Osteogenesis imperfecta (OI) is a family of rare heritable skeletal disorders associated with dominant mutations in the collagen type I encoding genes and recessive defects in proteins involved in collagen type I synthesis and processing and in osteoblast differentiation and activity. Historically, it was believed that the OI bone phenotype was only caused by abnormal collagen type I fibrils in the extracellular matrix, but more recently it became clear that the altered bone cell homeostasis, due to mutant collagen retention, plays a relevant role in modulating disease severity in most of the OI forms and it is correlated to impaired bone cell differentiation. Despite in vitro evidence, in vivo data are missing. To better understand the physiopathology of OI, we used two zebrafish models: Chihuahua (Chi/+), carrying a dominant p.G736D substitution in the α1 chain of collagen type I, and the recessive p3h1-/-, lacking prolyl 3-hydroxylase (P3h1) enzyme. Both models share the delay of collagen type I folding, resulting in its overmodification and partial intracellular retention. The regeneration of the bony caudal fin of Chi/+ and p3h1-/- was employed to investigate the impact of abnormal collagen synthesis on bone cell differentiation. Reduced regenerative ability was evident in both models, but it was associated to impaired osteoblast differentiation and osteoblastogenesis/adipogenesis switch only in Chi/+. On the contrary, reduced osteoclast number and activity were found in both models during regeneration. The dominant OI model showed a more detrimental effect in the extracellular matrix organization. Interestingly, the chemical chaperone 4-phenylbutyrate (4-PBA), known to reduce cellular stress and increase collagen secretion, improved bone formation only in p3h1-/- by favoring caudal fin growth without affecting bone cell markers expression. Taken together, our in vivo data proved the negative impact of structurally abnormal collagen type I on bone formation but revealed a gene mutation-specific effect on bone cell differentiation and matrix organization in OI. These, together with the distinct ability to respond to the chaperone treatment, underline the need for precision medicine approaches to properly treat the disease.
Assuntos
Colágeno Tipo I , Osteogênese Imperfeita , Animais , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Osteogênese Imperfeita/genética , Osteogênese Imperfeita/metabolismo , Osteogênese/genética , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Colágeno/metabolismo , Chaperonas Moleculares/genética , Mutação , Diferenciação CelularRESUMO
Pseudoxanthoma elasticum (PXE) is a rare ectopic calcification disorder affecting soft connective tissues that is caused by biallelic ABCC6 mutations. While the underlying pathomechanisms are incompletely understood, reduced circulatory levels of inorganic pyrophosphate (PPi)-a potent mineralization inhibitor-have been reported in PXE patients and were suggested to be useful as a disease biomarker. In this study, we explored the relation between PPi, the ABCC6 genotype and the PXE phenotype. For this, we optimized and validated a PPi measurement protocol with internal calibration that can be used in a clinical setting. An analysis of 78 PXE patients, 69 heterozygous carriers and 14 control samples revealed significant differences in the measured PPi levels between all three cohorts, although there was overlap between all groups. PXE patients had a ±50% reduction in PPi levels compared to controls. Similarly, we found a ±28% reduction in carriers. PPi levels were found to correlate with age in PXE patients and carriers, independent of the ABCC6 genotype. No correlations were found between PPi levels and the Phenodex scores. Our results suggest that other factors besides PPi are at play in ectopic mineralization, which limits the use of PPi as a predictive biomarker for severity and disease progression.
RESUMO
Marfan syndrome is an autosomal dominant genetic disorder resulting from pathogenic variants in FBN1 gene. FBN1 encodes for fibrillin-1, an important extracellular matrix protein. Impaired fibrillin-1 affects multiple organ systems, including the cardiovascular system. We generated an iPSC line carrying a heterozygous variant c.7754 T > C (p.Ile2585Thr, missense) in FBN1 from a patient with Marfan syndrome. Also, an isogenic control is generated, where the pathogenic variant is repaired using CRISPR-Cas9. This isogenic pair provides a valuable resource for in vitro disease modelling.
Assuntos
Células-Tronco Pluripotentes Induzidas , Síndrome de Marfan , Humanos , Sistemas CRISPR-Cas , Fibrilina-1/genética , Heterozigoto , Células-Tronco Pluripotentes Induzidas/metabolismo , Síndrome de Marfan/genética , MutaçãoRESUMO
Introduction: Trimeric intracellular potassium channels TRIC-A and -B are endoplasmic reticulum (ER) integral membrane proteins, involved in the regulation of calcium release mediated by ryanodine (RyRs) and inositol 1,4,5-trisphosphate (IP3Rs) receptors, respectively. While TRIC-A is mainly expressed in excitable cells, TRIC-B is ubiquitously distributed at moderate level. TRIC-B deficiency causes a dysregulation of calcium flux from the ER, which impacts on multiple collagen specific chaperones and modifying enzymatic activity, leading to a rare form of osteogenesis imperfecta (OI Type XIV). The relevance of TRIC-B on cell homeostasis and the molecular mechanism behind the disease are still unknown. Results: In this study, we exploited zebrafish to elucidate the role of TRIC-B in skeletal tissue. We demonstrated, for the first time, that tmem38a and tmem38b genes encoding Tric-a and -b, respectively are expressed at early developmental stages in zebrafish, but only the latter has a maternal expression. Two zebrafish mutants for tmem38b were generated by CRISPR/Cas9, one carrying an out of frame mutation introducing a premature stop codon (tmem38b-/- ) and one with an in frame deletion that removes the highly conserved KEV domain (tmem38bΔ120-7/Δ120-7 ). In both models collagen type I is under-modified and partially intracellularly retained in the endoplasmic reticulum, as described in individuals affected by OI type XIV. Tmem38b-/- showed a mild skeletal phenotype at the late larval and juvenile stages of development whereas tmem38bΔ120-7/Δ120-7 bone outcome was limited to a reduced vertebral length at 21 dpf. A caudal fin regeneration study pointed towards impaired activity of osteoblasts and osteoclasts associated with mineralization impairment. Discussion: Our data support the requirement of Tric-b during early development and for bone cell differentiation.
Assuntos
Canais Iônicos , Osteogênese Imperfeita , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Osso e Ossos/metabolismo , Cálcio/metabolismo , Diferenciação Celular/genética , Canais Iônicos/genética , Osteogênese Imperfeita/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genéticaRESUMO
Bi-allelic mutations in the gene coding for human trans-membrane anterior-posterior transformation protein 1 (TAPT1) result in a broad phenotypic spectrum, ranging from syndromic disease with severe skeletal and congenital abnormalities to isolated early-onset cataract. We present here the first patient with a frameshift mutation in the TAPT1 gene, resulting in both bilateral early-onset cataract and skeletal abnormalities, in addition to several dysmorphic features, in this way further expanding the phenotypic spectrum associated with TAPT1 mutations. A tapt1a/tapt1b double knock-out (KO) zebrafish model generated by CRISPR/Cas9 gene editing revealed an early larval phenotype with eye malformations, loss of vision, increased photokinetics and hyperpigmentation, without visible skeletal involvement. Ultrastructural analysis of the eyes showed a smaller condensed lens, loss of integrity of the lens capsule with formation of a secondary lens and hyperplasia of the cells in the ganglion and inner plexiform layers of the retina. Transcriptomic analysis pointed to an impaired lens development with aberrant expression of many of the crystallin and other lens-specific genes. Furthermore, the phototransduction and visual perception pathways were found to be significantly disturbed. Differences in light perception are likely the cause of the increased dark photokinetics and generalized hyperpigmentation observed in this zebrafish model. In conclusion, this study validates TAPT1 as a new gene for early-onset cataract and sheds light on its ultrastructural and molecular characteristics.
Assuntos
Catarata , Cristalino , Animais , Humanos , Catarata/genética , Cristalino/metabolismo , Mutação , Retina/metabolismo , Peixe-Zebra/genética , Proteínas de Membrana/metabolismoRESUMO
Marfan syndrome (MFS) is a connective tissue disorder with pleiotropic manifestations in the ocular, skeletal and cardiovascular system; and is typically cause by pathogenic variants in the fibrillin-1 (FBN1) gene. We report a generated induced pluripotent cell (iPSC) line of a MFS patient with an FBN1 c.7754T > C (p.Ile2585Thr) variant. The cell line was generated from peripheral blood mononuclear cells (PBMCs) and after reprogramming the line showed a no relevant copy number alterations, expression of pluripotency markers and was able to differentiate into three germ layers while carrying the original genotype.
Assuntos
Células-Tronco Pluripotentes Induzidas , Síndrome de Marfan , Humanos , Síndrome de Marfan/genética , Fibrilina-1/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Leucócitos Mononucleares/metabolismo , MutaçãoRESUMO
Recent studies identified a missense mutation in the gene coding for G protein-coupled receptor kinase 6 (GRK6) that segregates with type 2 diabetes (T2D). To better understand how GRK6 might be involved in T2D, we used pharmacological inhibition and genetic knockdown in the mouse ß-cell line, MIN6, to determine whether GRK6 regulates insulin dynamics. We show inhibition of GRK5 and GRK6 increased insulin secretion but reduced insulin processing while GRK6 knockdown revealed these same processing defects with reduced levels of cellular insulin. GRK6 knockdown cells also had attenuated insulin secretion but enhanced proinsulin secretion consistent with decreased processing. In support of these findings, we demonstrate GRK6 rescue experiments in knockdown cells restored insulin secretion after glucose treatment. The altered insulin profile appears to be caused by changes in the proprotein convertases, the enzymes responsible for proinsulin to insulin conversion, as GRK6 knockdown resulted in significantly reduced convertase expression and activity. To identify how the GRK6-P384S mutation found in T2D patients might affect insulin processing, we performed biochemical and cell biological assays to study the properties of the mutant. We found that while GRK6-P384S was more active than WT GRK6, it displayed a cytosolic distribution in cells compared to the normal plasma membrane localization of GRK6. Additionally, GRK6 overexpression in MIN6 cells enhanced proinsulin processing, while GRK6-P384S expression had little effect. Taken together, our data show that GRK6 regulates insulin processing and secretion in a glucose-dependent manner and provide a foundation for understanding the contribution of GRK6 to T2D.
Assuntos
Diabetes Mellitus Tipo 2 , Quinases de Receptores Acoplados a Proteína G , Insulina , Proinsulina , Animais , Camundongos , Diabetes Mellitus Tipo 2/genética , Glucose/farmacologia , Insulina/metabolismo , Proinsulina/genética , Proinsulina/metabolismo , Quinases de Receptores Acoplados a Proteína G/genética , Quinases de Receptores Acoplados a Proteína G/metabolismo , Linhagem CelularRESUMO
Pseudoxanthoma elasticum (PXE) is a currently intractable genetic disorder characterized by progressive ectopic calcification in the skin, eyes and arteries. Therapeutic trials in PXE are severely hampered by the lack of reliable biomarkers. Serum calcification propensity T50 is a blood test measuring the functional anticalcifying buffer capacity of serum. Here, we evaluated T50 in PXE patients aiming to investigate its determinants and suitability as a potential biomarker for disease severity. Fifty-seven PXE patients were included in this cross-sectional study, and demographic, clinical, imaging and biochemical data were collected from medical health records. PXE severity was assessed using Phenodex scores. T50 was measured using a validated, nephelometry-based assay. Multivariate models were then created to investigate T50 determinants and associations with disease severity. In short, the mean age of patients was 45.2 years, 68.4% was female and mean serum T50 was 347 min. Multivariate regression analysis identified serum fetuin-A (p < 0.001), phosphorus (p = 0.007) and magnesium levels (p = 0.034) as significant determinants of T50, while no correlations were identified with serum calcium, eGFR, plasma PPi levels or the ABCC6 genotype. After correction for covariates, T50 was found to be an independent determinant of ocular (p = 0.013), vascular (p = 0.013) and overall disease severity (p = 0.016) in PXE. To conclude, shorter serum T50indicative of a higher calcification propensitywas associated with a more severe phenotype in PXE patients. This study indicates, for the first time, that serum T50 might be a clinically relevant biomarker in PXE and may thus be of importance to future therapeutic trials.
RESUMO
Congenital heart defects (CHD) are the most common congenital anomalies in liveborn children. In contrast to syndromic CHD (SCHD), the genetic basis of isolated CHD (ICHD) is complex, and the underlying pathogenic mechanisms appear intricate and are incompletely understood. Next to rare Mendelian conditions, somatic mosaicism or a complex multifactorial genetic architecture are assumed for most ICHD. We performed exome sequencing (ES) in 73 parent-offspring ICHD trios using proband DNA extracted from cardiac tissue. We identified six germline de novo variants and 625 germline rare inherited variants with 'damaging' in silico predictions in cardiac-relevant genes expressed in the developing human heart. There were no CHD-relevant somatic variants. Transmission disequilibrium testing (TDT) and association testing (AT) yielded no statistically significant results, except for the AT of missense variants in cilia genes. Somatic mutations are not a common cause of ICHD. Rare de novo and inherited protein-damaging variants may contribute to ICHD, possibly as part of an oligogenic or polygenic disease model. TDT and AT failed to provide informative results, likely due to the lack of power, but provided a framework for future studies in larger cohorts. Overall, the diagnostic value of ES on cardiac tissue is limited in individual ICHD cases.
Assuntos
Exoma , Cardiopatias Congênitas , Criança , DNA , Exoma/genética , Cardiopatias Congênitas/diagnóstico , Cardiopatias Congênitas/genética , Humanos , Mutação , Sequenciamento do ExomaRESUMO
BACKGROUND: In order to facilitate the diagnostic process for adult patients suffering from a rare disease, the Undiagnosed Disease Program (UD-PrOZA) was founded in 2015 at the Ghent University Hospital in Belgium. In this study we report the five-year results of our multidisciplinary approach in rare disease diagnostics. METHODS: Patients referred by a healthcare provider, in which an underlying rare disease is likely, qualify for a UD-PrOZA evaluation. UD-PrOZA uses a multidisciplinary clinical approach combined with state-of-the-art genomic technologies in close collaboration with research facilities to diagnose patients. RESULTS: Between 2015 and 2020, 692 patients (94% adults) were referred of which 329 (48%) were accepted for evaluation. In 18% (60 of 329) of the cases a definite diagnosis was made. 88% (53 of 60) of the established diagnoses had a genetic origin. 65% (39 of 60) of the genetic diagnoses were made through whole exome sequencing (WES). The mean time interval between symptom-onset and diagnosis was 19 years. Key observations included novel genotype-phenotype correlations, new variants in known disease genes and the identification of three new disease genes. In 13% (7 of 53), identifying the molecular cause was associated with therapeutic recommendations and in 88% (53 of 60), gene specific genetic counseling was made possible. Actionable secondary findings were reported in 7% (12 of 177) of the patients in which WES was performed. CONCLUSION: UD-PrOZA offers an innovative interdisciplinary platform to diagnose rare diseases in adults with previously unexplained medical problems and to facilitate translational research.
Assuntos
Doenças Raras , Doenças não Diagnosticadas , Exoma , Genômica , Humanos , Doenças Raras/diagnóstico , Doenças Raras/genética , Sequenciamento do ExomaRESUMO
BACKGROUND: A hitherto undescribed form of diabetes mellitus type 2 is reported in a Flemish family. In these patients, markedly elevated gastrin levels were observed, which could not be linked to gastrointestinal symptoms. MATERIALS AND METHODS: Gel permeation chromatography was performed for gastrin, insulin, and proinsulin. Proprotein convertase subtilisin/kexin type (PCSK1 and PCSK2)] were sequenced. Whole-exome sequencing was performed on the genomic DNA extracted from leukocytes of the proband of the family. RESULTS: Gel permeation chromatography revealed that the apparent hypergastrinemia was caused by the accumulation of biologically inactive progastrin. Besides, high serum concentrations of proinsulin and intact fibroblast growth factor 23 (FGF23) were also detected. Sequencing of PCSK1 and PCSK2 genes did not reveal any mutations in these genes. Whole exome sequencing revealed a c.1150C > T (p.Pro384Ser) mutation in G protein-coupled receptor kinase 6 (GRK6), which cosegregated with the disease. Expression of the mutant enzyme in mammalian cells revealed that it was mislocalized compared to the wild-type GRK6. CONCLUSIONS: In the affected patients, prohormone processing is impaired likely due to the altered function of mutant GRK6. Delayed pro-insulin processing causes hypoglycaemia episodes a couple of hours following meals. In addition, increased plasma concentrations of progastrin and intact FGF23 in the affected individuals can be explained by incomplete processing of the precursor hormones.