Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Cell Sci ; 127(Pt 21): 4692-701, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25205763

RESUMO

Metastatic lymph node 51 (MLN51, also known as CASC3) is a core component of the exon junction complex (EJC), which is loaded onto spliced mRNAs and plays an essential role in determining their fate. Unlike the three other EJC core components [eIF4AIII, Magoh and Y14 (also known as RBM8A)], MLN51 is mainly located in the cytoplasm, where it plays a key role in the assembly of stress granules. In this study, we further investigated the cytoplasmic role of MLN51. We show that MLN51 is a new component of processing bodies (P-bodies). When overexpressed, MLN51 localizes in novel small cytoplasmic foci. These contain RNA, show directed movements and are distinct from stress granules and P-bodies. The appearance of these foci correlates with the process of P-body disassembly. A similar reduction in P-body count is also observed in human HER2-positive (HER2(+)) breast cancer cells overexpressing MLN51. This suggests that P-body disassembly and subsequent mRNA deregulation might correlate with cancer progression.


Assuntos
Neoplasias da Mama/metabolismo , Grânulos Citoplasmáticos/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/metabolismo , Neoplasias da Mama/genética , Citoplasma/metabolismo , Grânulos Citoplasmáticos/genética , Fator de Iniciação 4A em Eucariotos/genética , Fator de Iniciação 4A em Eucariotos/metabolismo , Células HeLa , Humanos , Imuno-Histoquímica , Hibridização in Situ Fluorescente , Proteínas de Neoplasias/genética , Proteínas Nucleares/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
2.
J Mol Biol ; 426(2): 377-88, 2014 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-24095898

RESUMO

During protein synthesis, many translating ribosomes are bound together with an mRNA molecule to form polysomes (or polyribosomes). While the spatial organization of bacterial polysomes has been well studied in vitro, little is known about how they cluster when cellular conditions are highly constrained. To better understand this, we used electron tomography, template matching, and three-dimensional modeling to analyze the supramolecular network of ribosomes after induction of translational pauses. In Escherichia coli, we overexpressed an mRNA carrying a polyproline motif known to induce pausing during translation. When working with a strain lacking transfer-messenger RNA, the principle actor in the "trans-translation" rescuing system, the cells survived the hijacking of the translation machinery but this resulted in a sharp modification of the ribosomal network. The results of our experiments demonstrate that single ribosomes are replaced with large amounts of compacted polysomes. These polysomes are highly organized, principally forming hairpins and dimers of hairpins that stack together. We propose that these spatial arrangements help maintain translation efficiency when the rescue systems are absent or overwhelmed.


Assuntos
Escherichia coli/química , Escherichia coli/metabolismo , Substâncias Macromoleculares/química , Substâncias Macromoleculares/metabolismo , Polirribossomos/química , Polirribossomos/metabolismo , Tomografia com Microscopia Eletrônica , Imageamento Tridimensional , Peptídeos/metabolismo , Biossíntese de Proteínas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
3.
RNA Biol ; 10(2): 314-20, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23324601

RESUMO

A finely tuned balance of translation, storage and decay of mRNAs (mRNAs) is important for the regulation of gene expression. In eukaryotic cells, this takes place in dynamic cytoplasmic RNA-protein granules termed Processing bodies (P-bodies). In this study, by using immunoelectron tomography, 3D modeling and template matching, we analyze the size and the organization of the polysomes in the vicinity of human P-bodies. Our results show the presence of several polysomes that are compatible with a translational activity around P-bodies. Therefore, movement of mRNAs between polysomes and P-bodies can take place when the two compartments are in close contact. The presence of initiation factors in the proximity of P-bodies also suggests that translation of mRNAs can resume at the periphery of these granules.


Assuntos
Grânulos Citoplasmáticos/metabolismo , Polirribossomos/metabolismo , Transporte de RNA , Grânulos Citoplasmáticos/genética , Tomografia com Microscopia Eletrônica , Fator de Iniciação 4E em Eucariotos/genética , Fator de Iniciação 4E em Eucariotos/metabolismo , Fator de Iniciação Eucariótico 4G/genética , Fator de Iniciação Eucariótico 4G/metabolismo , Células HeLa , Humanos , Polirribossomos/genética , Polirribossomos/ultraestrutura , Biossíntese de Proteínas , Estabilidade de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
4.
J Mol Biol ; 420(1-2): 17-28, 2012 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-22484175

RESUMO

Processing bodies (P-bodies) are cytoplasmic non-membranous domains involved in the regulation of eukaryotic gene expression. Since their discovery, several studies using fluorescence-based strategies have uncovered their pivotal role in mRNA metabolism, particularly during translation repression and/or mRNA degradation. Yet, P-bodies still remain a "black box" in which numerous proteins accumulate next to RNAs to regulate their fate by unknown mechanisms. In this study, we investigated the ultrastructural organization of P-bodies in human cells. Using a wide range of original electron microscopy strategies, including high-pressure freezing and freeze substitution, we found that P-bodies are huge ribonucleoprotein complexes located in the close proximity of mitochondria and ribosomes, in which regulatory factors exhibit differential localization depending on their activity on mRNAs. We describe the first experiment pairing immunogold labeling with electron tomography (immunoelectron tomography) of a human P-body. Overall, the results depict a P-body organization that comprises at least two distinct compartments: a dense core on which peripheral protrusions are anchored.


Assuntos
Células/ultraestrutura , Regulação da Expressão Gênica , Microscopia Imunoeletrônica , Ribonucleoproteínas/química , Linhagem Celular , Células/química , Citoplasma , Grânulos Citoplasmáticos/química , Grânulos Citoplasmáticos/ultraestrutura , Tomografia com Microscopia Eletrônica , Humanos , Mitocôndrias , Complexos Multiproteicos/química , Complexos Multiproteicos/ultraestrutura , Estabilidade de RNA , RNA Mensageiro , Ribonucleoproteínas/ultraestrutura , Ribossomos
5.
J Neurosci ; 28(51): 13793-804, 2008 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-19091970

RESUMO

Intracellular mRNA transport and local translation play a key role in neuronal physiology. Translationally repressed mRNAs are transported as a part of ribonucleoprotein (RNP) particles to distant dendritic sites, but the properties of different RNP particles and mechanisms of their repression and transport remain largely unknown. Here, we describe a new class of RNP-particles, the dendritic P-body-like structures (dlPbodies), which are present in the soma and dendrites of mammalian neurons and have both similarities and differences to P-bodies of non-neuronal cells. These structures stain positively for a number of P-body and microRNP components, a microRNA-repressed mRNA and some translational repressors. They appear more heterogeneous than P-bodies of HeLa cells, and they rarely contain the exonuclease Xrn1 but are positive for rRNA. These particles show motorized movements along dendrites and relocalize to distant sites in response to synaptic activation. Furthermore, Dcp1a is stably associated with dlP-bodies in unstimulated cells, but exchanges rapidly on neuronal activation, concomitantly with the loss of Ago2 from dlP-bodies. Thus, dlP-bodies may regulate local translation by storing repressed mRNPs in unstimulated cells, and releasing them on synaptic activation.


Assuntos
Dendritos/fisiologia , Dendritos/ultraestrutura , MicroRNAs/metabolismo , Neurônios/ultraestrutura , Ribonucleoproteínas/fisiologia , Animais , Proteínas Argonautas , Transporte Biológico/fisiologia , Células Cultivadas , Dendritos/efeitos dos fármacos , Endorribonucleases/genética , Fator de Iniciação 2 em Eucariotos/genética , Agonistas de Aminoácidos Excitatórios/farmacologia , Proteínas de Fluorescência Verde/genética , Células HeLa , Hipocampo/citologia , Humanos , Hipotálamo/citologia , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Tamanho da Partícula , RNA Ribossômico/metabolismo , Ratos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia , Transativadores/genética , Transfecção
6.
Mol Biol Cell ; 19(10): 4469-79, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18632980

RESUMO

In mammals, repression of translation during stress is associated with the assembly of stress granules in the cytoplasm, which contain a fraction of arrested mRNA and have been proposed to play a role in their storage. Because physical contacts are seen with GW bodies, which contain the mRNA degradation machinery, stress granules could also target arrested mRNA to degradation. Here we show that contacts between stress granules and GW bodies appear during stress-granule assembly and not after a movement of the two preassembled structures. Despite this close proximity, the GW body proteins, which in some conditions relocalize in stress granules, come from cytosol rather than from adjacent GW bodies. It was previously reported that several proteins actively traffic in and out of stress granules. Here we investigated the behavior of mRNAs. Their residence time in stress granules is brief, on the order of a minute, although stress granules persist over a few hours after stress relief. This short transit reflects rapid return to cytosol, rather than transfer to GW bodies for degradation. Accordingly, most arrested mRNAs are located outside stress granules. Overall, these kinetic data do not support a direct role of stress granules neither as storage site nor as intermediate location before degradation.


Assuntos
Regulação da Expressão Gênica , Biossíntese de Proteínas , Arsenitos/farmacologia , Citosol/metabolismo , Células HeLa , Humanos , Hibridização in Situ Fluorescente , Cinética , Microscopia de Fluorescência , Modelos Biológicos , Polirribossomos/metabolismo , Transporte Proteico , Estabilidade de RNA/genética , RNA Mensageiro/metabolismo , Transfecção
7.
J Cell Biol ; 178(7): 1145-60, 2007 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-17893241

RESUMO

In mammals, nonsense-mediated mRNA decay (NMD) is a quality-control mechanism that degrades mRNA harboring a premature termination codon to prevent the synthesis of truncated proteins. To gain insight into the NMD mechanism, we identified NMD inhibitor 1 (NMDI 1) as a small molecule inhibitor of the NMD pathway. We characterized the mode of action of this compound and demonstrated that it acts upstream of hUPF1. NMDI 1 induced the loss of interactions between hSMG5 and hUPF1 and the stabilization of hyperphosphorylated isoforms of hUPF1. Incubation of cells with NMDI 1 allowed us to demonstrate that NMD factors and mRNAs subject to NMD transit through processing bodies (P-bodies), as is the case in yeast. The results suggest a model in which mRNA and NMD factors are sequentially recruited to P-bodies.


Assuntos
Códon sem Sentido/metabolismo , Estruturas Citoplasmáticas/efeitos dos fármacos , Estruturas Citoplasmáticas/metabolismo , Indóis/farmacologia , Estabilidade de RNA/efeitos dos fármacos , Proteínas de Transporte/metabolismo , Regulação para Baixo/efeitos dos fármacos , Exorribonucleases/genética , Células HeLa , Humanos , Proteínas Associadas aos Microtúbulos/genética , Modelos Biológicos , Proteínas Mutantes/metabolismo , Fosforilação/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Isoformas de Proteínas/metabolismo , Transporte Proteico/efeitos dos fármacos , RNA Helicases , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Termodinâmica , Transativadores/metabolismo , Fatores de Transcrição/genética
8.
J Cell Sci ; 120(Pt 16): 2774-84, 2007 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-17652158

RESUMO

Metastatic lymph node 51 [MLN51 (also known as CASC3)] is a component of the exon junction complex (EJC), which is assembled on spliced mRNAs and plays important roles in post-splicing events. The four proteins of the EJC core, MLN51, MAGOH, Y14 and EIF4AIII shuttle between the cytoplasm and the nucleus. However, unlike the last three, MLN51 is mainly detected in the cytoplasm, suggesting that it plays an additional function in this compartment. In the present study, we show that MLN51 is recruited into cytoplasmic aggregates known as stress granules (SGs) together with the SG-resident proteins, fragile X mental retardation protein (FMRP), poly(A) binding protein (PABP) and poly(A)(+) RNA. MLN51 specifically associates with SGs via its C-terminal region, which is dispensable for its incorporation in the EJC. MLN51 does not promote SG formation but its silencing, or the overexpression of a mutant lacking its C-terminal region, alters SG assembly. Finally, in human breast carcinomas, MLN51 is sometimes present in cytoplasmic foci also positive for FMRP and PABP, suggesting that SGs formation occurs in malignant tumours.


Assuntos
Grânulos Citoplasmáticos/metabolismo , Éxons/genética , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Sobrevivência Celular , Regulação para Baixo/genética , Fator de Iniciação 2B em Eucariotos/metabolismo , Feminino , Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Células HeLa , Humanos , Microdomínios da Membrana/metabolismo , Proteínas de Neoplasias/deficiência , Proteínas de Neoplasias/genética , Proteínas Nucleares/deficiência , Proteínas Nucleares/genética , Fosforilação , Ligação Proteica , Transporte Proteico , Proteínas de Ligação a RNA , Regulação para Cima/genética
9.
Science ; 309(5740): 1573-6, 2005 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-16081698

RESUMO

MicroRNAs (miRNAs) are approximately 21-nucleotide-long RNA molecules regulating gene expression in multicellular eukaryotes. In metazoa, miRNAs act by imperfectly base-pairing with the 3' untranslated region of target messenger RNAs (mRNAs) and repressing protein accumulation by an unknown mechanism. We demonstrate that endogenous let-7 microribonucleoproteins (miRNPs) or the tethering of Argonaute (Ago) proteins to reporter mRNAs in human cells inhibit translation initiation. M(7)G-cap-independent translation is not subject to repression, suggesting that miRNPs interfere with recognition of the cap. Repressed mRNAs, Ago proteins, and miRNAs were all found to accumulate in processing bodies. We propose that localization of mRNAs to these structures is a consequence of translational repression.


Assuntos
MicroRNAs/fisiologia , Iniciação Traducional da Cadeia Peptídica , Ribonucleoproteínas/fisiologia , Proteínas Argonautas , Fator de Iniciação 2 em Eucariotos , Células HeLa , Humanos , MicroRNAs/análise , Fatores de Iniciação de Peptídeos/análise , Fatores de Iniciação de Peptídeos/fisiologia , Capuzes de RNA/metabolismo , RNA Mensageiro/análise , Ribonucleoproteínas/análise
10.
Trends Biochem Sci ; 29(8): 436-44, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15362228

RESUMO

distinctive feature of eukaryotic mRNA and small nuclear RNA (snRNA) that are transcribed by RNA polymerase II (Pol II) is the presence of a cap structure at their 5' end. This essential modification serves as an inviting 'landing pad' for factors that are involved in various cellular processes such as pre-mRNA splicing, nucleocytoplasmic RNA export and localization, and translation initiation. Because of the important functions mediated by the mRNA cap, this structure needs to be modified and/or degraded in a tightly controlled manner. Several cellular and viral systems implicated in cap metabolism have been uncovered recently; their analyses provide interesting new information on cell structure and function.


Assuntos
Núcleo Celular/metabolismo , Proteínas de Ligação ao Cap de RNA/metabolismo , Capuzes de RNA/química , Processamento Pós-Transcricional do RNA , RNA Nuclear Pequeno/química , Transcrição Gênica , Animais , Humanos
11.
J Cell Biol ; 165(1): 31-40, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15067023

RESUMO

Understanding gene expression control requires defining the molecular and cellular basis of mRNA turnover. We have previously shown that the human decapping factors hDcp2 and hDcp1a are concentrated in specific cytoplasmic structures. Here, we show that hCcr4, hDcp1b, hLsm, and rck/p54 proteins related to 5'-3' mRNA decay also localize to these structures, whereas DcpS, which is involved in cap nucleotide catabolism, is nuclear. Functional analysis using fluorescence resonance energy transfer revealed that hDcp1a and hDcp2 interact in vivo in these structures that were shown to differ from the previously described stress granules. Our data indicate that these new structures are dynamic, as they disappear when mRNA breakdown is abolished by treatment with inhibitors. Accumulation of poly(A)(+) RNA in these structures, after RNAi-mediated inactivation of the Xrn1 exonuclease, demonstrates that they represent active mRNA decay sites. The occurrence of 5'-3' mRNA decay in specific subcellular locations in human cells suggests that the cytoplasm of eukaryotic cells may be more organized than previously anticipated.


Assuntos
Compartimento Celular/genética , Endorribonucleases/metabolismo , Organelas/metabolismo , Estabilidade de RNA/genética , Linhagem Celular , Grânulos Citoplasmáticos/genética , Grânulos Citoplasmáticos/metabolismo , Grânulos Citoplasmáticos/ultraestrutura , RNA Helicases DEAD-box , Endorribonucleases/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Organelas/genética , Organelas/ultraestrutura , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Biossíntese de Proteínas/efeitos dos fármacos , Biossíntese de Proteínas/genética , Proteínas/genética , Proteínas/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Interferência de RNA , RNA Nucleotidiltransferases/genética , RNA Nucleotidiltransferases/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores CCR4 , Receptores de Quimiocinas/genética , Receptores de Quimiocinas/metabolismo
12.
RNA ; 9(10): 1171-3, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-13130130

RESUMO

A novel cytoplasmic compartment referred to as GW bodies (GWBs) was initially identified using antibodies specific to a 182-kD protein termed GW182. GW182 was characterized by multiple glycine(G)-tryptophan(W) repeats and an RNA recognition motif (RRM) that bound a subset of HeLa cell messenger RNAs (mRNAs). The function of GWBs was not known; however, more recent evidence suggested similarities between GWBs and cytoplasmic structures that contain hLSm proteins and hDcp1, the human homolog to a yeast decapping enzyme subunit. In this study, we used antibodies to hLSm4 and hDcp1 to show that both of these markers of an mRNA degradation pathway colocalize to the same structures as GW182. Our studies demonstrate that GW182, hLSm4, and hDcp1 are found in the same cytoplasmic structures and suggest that GW182 is involved in the same mRNA processing pathway as hLSm4 and hDcp1.


Assuntos
Autoantígenos/metabolismo , Citoplasma/metabolismo , Endopeptidases/metabolismo , RNA Mensageiro/metabolismo , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Células Tumorais Cultivadas/metabolismo , Autoantígenos/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Citoplasma/genética , Endopeptidases/genética , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Transporte Proteico , RNA Mensageiro/genética , Proteínas de Ligação a RNA
13.
EMBO J ; 21(24): 6915-24, 2002 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-12486012

RESUMO

We have cloned cDNAs for the human homologues of the yeast Dcp1 and Dcp2 factors involved in the major (5'-3') and NMD mRNA decay pathways. While yeast Dcp1 has been reported to be the decapping enzyme, we show that recombinant human Dcp2 (hDcp2) is enzymatically active. Dcp2 activity appears evolutionarily conserved. Mutational and biochemical analyses indicate that the hDcp2 MutT/Nudix domain mediates this activity. hDcp2 generates m7GDP and 5'-phosphorylated mRNAs that are 5'-3' exonuclease substrates. Corresponding decay intermediates are present in human cells showing the relevance of this activity. hDcp1 and hDcp2 co-localize in cell cytoplasm, consistent with a role in mRNA decay. Interestingly, these two proteins show a non-uniform distribution, accumulating in specific foci.


Assuntos
Endopeptidases/metabolismo , Endorribonucleases/metabolismo , Endorribonucleases/fisiologia , RNA Mensageiro/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Western Blotting , Catálise , Linhagem Celular , Núcleo Celular/metabolismo , Clonagem Molecular , Citoplasma/metabolismo , DNA Complementar/metabolismo , Glutationa Transferase/metabolismo , Proteínas de Fluorescência Verde , Humanos , Proteínas Luminescentes/metabolismo , Microscopia de Fluorescência , Dados de Sequência Molecular , Fosforilação , Plasmídeos/metabolismo , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA