Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Genet ; 14: 1197933, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37470040

RESUMO

The regulation of immune cell responses to infection is a complex process that involves various molecular mechanisms, including epigenetic regulation. DNA methylation has been shown to play central roles in regulating gene expression and modulating cell response during infection. However, the nature and extent to which DNA methylation is involved in the host immune response in human malaria remains largely unknown. Here, we present a longitudinal study investigating the temporal dynamics of genome-wide in vivo DNA methylation profiles using 189 MethylationEPIC 850 K profiles from 66 children in Burkina Faso, West Africa, sampled three times: before infection, during symptomatic parasitemia, and after malaria treatment. The results revealed major changes in the DNA methylation profiles of children in response to both Plasmodium falciparum infection and malaria treatment, with widespread hypomethylation of CpGs upon infection (82% of 6.8 K differentially methylated regions). We document a remarkable reversal of CpG methylation profiles upon treatment to pre-infection states. These changes implicate divergence in core immune processes, including the regulation of lymphocyte, neutrophil, and myeloid leukocyte function. Integrative DNA methylation-mRNA analysis of a top differentially methylated region overlapping the pro-inflammatory gene TNF implicates DNA methylation of TNF cis regulatory elements in the molecular mechanisms of TNF regulation in human malaria. Our results highlight a central role of epigenetic regulation in mounting the host immune response to P. falciparum infection and in response to malaria treatment.

2.
Front Immunol ; 13: 978591, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36119062

RESUMO

Background: A blood-stage vaccine targeting the erythrocytic-stages of the malaria parasite Plasmodium falciparum could play a role to protect against clinical disease. Antibodies against the P. falciparum serine repeat antigen 5 (SE47 and SE36 domains) correlate well with the absence of clinical symptoms in sero-epidemiological studies. A previous phase Ib trial of the recombinant SE36 antigen formulated with aluminum hydroxyl gel (BK-SE36) was promising. This is the first time the vaccine candidate was evaluated in young children below 5 years using two vaccination routes. Methods: Safety and immunogenicity of BK-SE36 was assessed in a double-blind, randomized, controlled, age de-escalating phase Ib trial. Fifty-four Burkinabe children in each age cohort, 25-60 or 12-24 months, were randomized in a 1:1:1 ratio to receive three doses of BK-SE36 either by intramuscular (BK IM) or subcutaneous (BK SC) route on Day 0, Week 4, and 26; or the control vaccine, Synflorix® via IM route on Day 0, Week 26 (and physiological saline on Week 4). Safety data and samples for immunogenicity analyses were collected at various time-points. Results: Of 108 subjects, 104 subjects (96.3%) (Cohort 1: 94.4%; Cohort 2: 98.1%) received all three scheduled vaccine doses. Local reactions, mostly mild or of moderate severity, occurred in 99 subjects (91.7%). The proportion of subjects that received three doses without experiencing Grade 3 adverse events was similar across BK-SE36 vaccines and control arms (Cohort 1: 100%, 89%, and 89%; and Cohort 2: 83%, 82%, and 83% for BK IM, BK SC, and control, respectively). BK-SE36 vaccine was immunogenic, inducing more than 2-fold change in antibody titers from pre-vaccination, with no difference between the two vaccination routes. Titers waned before the third dose but in both cohorts titers were boosted 6 months after the first vaccination. The younger cohort had 2-fold and 4-fold higher geometric mean titers compared to the 25- to 60-month-old cohort after 2 and 3 doses of BK-SE36, respectively. Conclusion: BK-SE36 was well tolerated and immunogenic using either intramuscular or subcutaneous routes, with higher immune response in the younger cohort. Clinical Trial Registration: https://pactr.samrc.ac.za/TrialDisplay.aspx?TrialID=934, identifier PACTR201411000934120.


Assuntos
Vacinas Antimaláricas , Malária Falciparum , Alumínio , Antígenos de Protozoários , Criança , Pré-Escolar , Humanos , Malária Falciparum/prevenção & controle , Plasmodium falciparum
3.
Nat Commun ; 11(1): 5093, 2020 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-33037226

RESUMO

The mechanisms behind the ability of Plasmodium falciparum to evade host immune system are poorly understood and are a major roadblock in achieving malaria elimination. Here, we use integrative genomic profiling and a longitudinal pediatric cohort in Burkina Faso to demonstrate the role of post-transcriptional regulation in host immune response in malaria. We report a strong signature of miRNA expression differentiation associated with P. falciparum infection (127 out of 320 miRNAs, B-H FDR 5%) and parasitemia (72 miRNAs, B-H FDR 5%). Integrative miRNA-mRNA analysis implicates several infection-responsive miRNAs (e.g., miR-16-5p, miR-15a-5p and miR-181c-5p) promoting lymphocyte cell death. miRNA cis-eQTL analysis using whole-genome sequencing data identified 1,376 genetic variants associated with the expression of 34 miRNAs (B-H FDR 5%). We report a protective effect of rs114136945 minor allele on parasitemia mediated through miR-598-3p expression. These results highlight the impact of post-transcriptional regulation, immune cell death processes and host genetic regulatory control in malaria.


Assuntos
Evasão da Resposta Imune/genética , Malária Falciparum/genética , Malária Falciparum/imunologia , MicroRNAs/genética , Plasmodium falciparum/patogenicidade , Burkina Faso , Criança , Pré-Escolar , Regulação da Expressão Gênica , Genoma Humano , Humanos , Estudos Longitudinais , Parasitemia/genética , Parasitemia/imunologia , Plasmodium falciparum/imunologia , Polimorfismo de Nucleotídeo Único , Proteínas Proto-Oncogênicas c-bcl-2/genética , RNA Mensageiro/genética , Sequenciamento Completo do Genoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA