Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
1.
Genome Biol ; 24(1): 123, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37264421

RESUMO

BACKGROUND: Over the last decade, several coral genomes have been sequenced allowing a better understanding of these symbiotic organisms threatened by climate change. Scleractinian corals are reef builders and are central to coral reef ecosystems, providing habitat to a great diversity of species. RESULTS: In the frame of the Tara Pacific expedition, we assemble two coral genomes, Porites lobata and Pocillopora cf. effusa, with vastly improved contiguity that allows us to study the functional organization of these genomes. We annotate their gene catalog and report a relatively higher gene number than that found in other public coral genome sequences, 43,000 and 32,000 genes, respectively. This finding is explained by a high number of tandemly duplicated genes, accounting for almost a third of the predicted genes. We show that these duplicated genes originate from multiple and distinct duplication events throughout the coral lineage. They contribute to the amplification of gene families, mostly related to the immune system and disease resistance, which we suggest to be functionally linked to coral host resilience. CONCLUSIONS: At large, we show the importance of duplicated genes to inform the biology of reef-building corals and provide novel avenues to understand and screen for differences in stress resilience.


Assuntos
Antozoários , Animais , Antozoários/genética , Ecossistema , Recifes de Corais
2.
Mol Biol Evol ; 40(5)2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37154524

RESUMO

Whole-genome duplications (WGDs) have shaped the gene repertoire of many eukaryotic lineages. The redundancy created by WGDs typically results in a phase of massive gene loss. However, some WGD-derived paralogs are maintained over long evolutionary periods, and the relative contributions of different selective pressures to their maintenance are still debated. Previous studies have revealed a history of three successive WGDs in the lineage of the ciliate Paramecium tetraurelia and two of its sister species from the Paramecium aurelia complex. Here, we report the genome sequence and analysis of 10 additional P. aurelia species and 1 additional out group, revealing aspects of post-WGD evolution in 13 species sharing a common ancestral WGD. Contrary to the morphological radiation of vertebrates that putatively followed two WGD events, members of the cryptic P. aurelia complex have remained morphologically indistinguishable after hundreds of millions of years. Biases in gene retention compatible with dosage constraints appear to play a major role opposing post-WGD gene loss across all 13 species. In addition, post-WGD gene loss has been slower in Paramecium than in other species having experienced genome duplication, suggesting that the selective pressures against post-WGD gene loss are especially strong in Paramecium. A near complete lack of recent single-gene duplications in Paramecium provides additional evidence for strong selective pressures against gene dosage changes. This exceptional data set of 13 species sharing an ancestral WGD and 2 closely related out group species will be a useful resource for future studies on Paramecium as a major model organism in the evolutionary cell biology.


Assuntos
Duplicação Gênica , Paramecium , Animais , Paramecium/genética , Genoma , Dosagem de Genes , Vertebrados/genética , Evolução Molecular , Filogenia
3.
Cell Genom ; 3(4): 100295, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37082140

RESUMO

Sea urchins are emblematic models in developmental biology and display several characteristics that set them apart from other deuterostomes. To uncover the genomic cues that may underlie these specificities, we generated a chromosome-scale genome assembly for the sea urchin Paracentrotus lividus and an extensive gene expression and epigenetic profiles of its embryonic development. We found that, unlike vertebrates, sea urchins retained ancestral chromosomal linkages but underwent very fast intrachromosomal gene order mixing. We identified a burst of gene duplication in the echinoid lineage and showed that some of these expanded genes have been recruited in novel structures (water vascular system, Aristotle's lantern, and skeletogenic micromere lineage). Finally, we identified gene-regulatory modules conserved between sea urchins and chordates. Our results suggest that gene-regulatory networks controlling development can be conserved despite extensive gene order rearrangement.

4.
Mol Phylogenet Evol ; 168: 107408, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35031471

RESUMO

In the study of the evolution of biological complexity, a reliable phylogenetic framework is needed. Many attempts have been made to resolve phylogenetic relationships between higher groups (i.e., interordinal) of brown algae (Phaeophyceae) based on molecular evidence, but most of these relationships remain unclear. Analyses based on small multi-gene data (including chloroplast, mitochondrial and nuclear sequences) have yielded inconclusive and sometimes contradictory results. To address this problem, we have analyzed 32 nuclear protein-coding sequences in 39 Phaeophycean species belonging to eight orders. The resulting nuclear-based phylogenomic trees provide virtually full support for the phylogenetic relationships within the studied taxa, with few exceptions. The relationships largely confirm phylogenetic trees based on nuclear, chloroplast and mitochondrial sequences, except for the placement of the Sphacelariales with weak bootstrap support. Our study indicates that nuclear protein-coding sequences provide significant support to conclusively resolve phylogenetic relationships among Phaeophyceae, and may be a powerful approach to fully resolve interordinal relationships with increased taxon sampling.


Assuntos
Phaeophyceae , Núcleo Celular/genética , Proteínas Nucleares , Fases de Leitura Aberta , Phaeophyceae/genética , Filogenia
5.
PLoS Biol ; 19(7): e3001309, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34324490

RESUMO

Ciliates are unicellular eukaryotes with both a germline genome and a somatic genome in the same cytoplasm. The somatic macronucleus (MAC), responsible for gene expression, is not sexually transmitted but develops from a copy of the germline micronucleus (MIC) at each sexual generation. In the MIC genome of Paramecium tetraurelia, genes are interrupted by tens of thousands of unique intervening sequences called internal eliminated sequences (IESs), which have to be precisely excised during the development of the new MAC to restore functional genes. To understand the evolutionary origin of this peculiar genomic architecture, we sequenced the MIC genomes of 9 Paramecium species (from approximately 100 Mb in Paramecium aurelia species to >1.5 Gb in Paramecium caudatum). We detected several waves of IES gains, both in ancestral and in more recent lineages. While the vast majority of IESs are single copy in present-day genomes, we identified several families of mobile IESs, including nonautonomous elements acquired via horizontal transfer, which generated tens to thousands of new copies. These observations provide the first direct evidence that transposable elements can account for the massive proliferation of IESs in Paramecium. The comparison of IESs of different evolutionary ages indicates that, over time, IESs shorten and diverge rapidly in sequence while they acquire features that allow them to be more efficiently excised. We nevertheless identified rare cases of IESs that are under strong purifying selection across the aurelia clade. The cases examined contain or overlap cellular genes that are inactivated by excision during development, suggesting conserved regulatory mechanisms. Similar to the evolution of introns in eukaryotes, the evolution of Paramecium IESs highlights the major role played by selfish genetic elements in shaping the complexity of genome architecture and gene expression.


Assuntos
Éxons , Genoma de Protozoário , Células Germinativas , Paramecium tetraurellia/genética , Proteínas de Protozoários/genética , Elementos de DNA Transponíveis , Evolução Molecular
6.
Mol Ecol ; 30(8): 1806-1822, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33629449

RESUMO

The development of population genomic approaches in non-model species allows for renewed studies of the impact of reproductive systems and genetic drift on population diversity. Here, we investigate the genomic signatures of partial clonality in the deep water kelp Laminaria rodriguezii, known to reproduce by both sexual and asexual means. We compared these results with the species Laminaria digitata, a closely related species that differs by different traits, in particular its reproductive mode (no clonal reproduction). We analysed genome-wide variation with dd-RAD sequencing using 4,077 SNPs in L. rodriguezii and 7,364 SNPs in L. digitata. As predicted for partially clonal populations, we show that the distribution of FIS within populations of L. rodriguezii is shifted toward negative values, with a high number of loci showing heterozygote excess. This finding is the opposite of what we observed within sexual populations of L. digitata, characterized by a generalized deficit in heterozygotes. Furthermore, we observed distinct distributions of FIS among populations of L. rodriguezii, which is congruent with the predictions of theoretical models for different levels of clonality and genetic drift. These findings highlight that the empirical distribution of FIS is a promising feature for the genomic study of asexuality in natural populations. Our results also show that the populations of L. rodriguezii analysed here are genetically differentiated and probably isolated. Our study provides a conceptual framework to investigate partial clonality on the basis of RAD-sequencing SNPs. These results could be obtained without any reference genome, and are therefore of interest for various non-model species.


Assuntos
Kelp , Laminaria , Deriva Genética , Genômica , Kelp/genética , Laminaria/genética , Água
7.
Microbiol Resour Announc ; 8(31)2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31371528

RESUMO

We present the draft genome sequence of Tubulinosema ratisbonensis, a microsporidium species infecting Drosophila melanogaster A total of 3,013 protein-encoding genes and an array of transposable elements were identified. This work represents a necessary step to develop a novel model of host-parasite relationships using the highly tractable genetic model D. melanogaster.

8.
Mol Genet Genomics ; 294(1): 177-190, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30288581

RESUMO

Mechanisms involved in fine adaptation of fungi to their environment include differential gene regulation associated with single nucleotide polymorphisms and indels (including transposons), horizontal gene transfer, gene copy amplification, as well as pseudogenization and gene loss. The two Podospora genome sequences examined here emphasize the role of pseudogenization and gene loss, which have rarely been documented in fungi. Podospora comata is a species closely related to Podospora anserina, a fungus used as model in several laboratories. Comparison of the genome of P. comata with that of P. anserina, whose genome is available for over 10 years, should yield interesting data related to the modalities of genome evolution between these two closely related fungal species that thrive in the same types of biotopes, i.e., herbivore dung. Here, we present the genome sequence of the mat + isolate of the P. comata reference strain T. Comparison with the genome of the mat + isolate of P. anserina strain S confirms that P. anserina and P. comata are likely two different species that rarely interbreed in nature. Despite having a 94-99% of nucleotide identity in the syntenic regions of their genomes, the two species differ by nearly 10% of their gene contents. Comparison of the species-specific gene sets uncovered genes that could be responsible for the known physiological differences between the two species. Finally, we identified 428 and 811 pseudogenes (3.8 and 7.2% of the genes) in P. anserina and P. comata, respectively. Presence of high numbers of pseudogenes supports the notion that difference in gene contents is due to gene loss rather than horizontal gene transfers. We propose that the high frequency of pseudogenization leading to gene loss in P. anserina and P. comata accompanies specialization of these two fungi. Gene loss may be more prevalent during the evolution of other fungi than usually thought.


Assuntos
Proteínas Fúngicas/genética , Podospora/genética , Análise de Sequência de DNA/métodos , Sequência de Bases , Mapeamento Cromossômico , Evolução Molecular , Deleção de Genes , Regulação Fúngica da Expressão Gênica , Especiação Genética , Podospora/classificação , Pseudogenes , Análise de Sequência de RNA
9.
Sci Data ; 5: 180235, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30398473

RESUMO

Leptosphaeria maculans and Leptosphaeria biglobosa are ascomycete phytopathogens of Brassica napus (oilseed rape, canola). Here we report the complete sequence of three Leptosphaeria genomes (L. maculans JN3, L. maculans Nz-T4 and L. biglobosa G12-14). Nz-T4 and G12-14 genome assemblies were generated de novo and the reference JN3 genome assembly was improved using Oxford Nanopore MinION reads. The new assembly of L. biglobosa showed the existence of AT rich regions and pointed to a genome compartmentalization previously unsuspected following Illumina sequencing. Moreover nanopore sequencing allowed us to generate a chromosome-level assembly for the L. maculans reference isolate, JN3. The genome annotation was supported by integrating conserved proteins and RNA sequencing from Leptosphaeria-infected samples. The newly produced high-quality assemblies and annotations of those three Leptosphaeria genomes will allow further studies, notably focused on the tripartite interaction between L. maculans, L. biglobosa and oilseed rape. The discovery of as yet unknown effectors will notably allow progress in B. napus breeding towards L. maculans resistance.


Assuntos
Ascomicetos/genética , Genoma Fúngico , Ascomicetos/isolamento & purificação , Brassica napus/microbiologia , Genômica/instrumentação , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/instrumentação , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Anotação de Sequência Molecular/métodos , Análise de Sequência de RNA
10.
Nat Plants ; 4(7): 440-452, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29915331

RESUMO

Oaks are an important part of our natural and cultural heritage. Not only are they ubiquitous in our most common landscapes1 but they have also supplied human societies with invaluable services, including food and shelter, since prehistoric times2. With 450 species spread throughout Asia, Europe and America3, oaks constitute a critical global renewable resource. The longevity of oaks (several hundred years) probably underlies their emblematic cultural and historical importance. Such long-lived sessile organisms must persist in the face of a wide range of abiotic and biotic threats over their lifespans. We investigated the genomic features associated with such a long lifespan by sequencing, assembling and annotating the oak genome. We then used the growing number of whole-genome sequences for plants (including tree and herbaceous species) to investigate the parallel evolution of genomic characteristics potentially underpinning tree longevity. A further consequence of the long lifespan of trees is their accumulation of somatic mutations during mitotic divisions of stem cells present in the shoot apical meristems. Empirical4 and modelling5 approaches have shown that intra-organismal genetic heterogeneity can be selected for6 and provides direct fitness benefits in the arms race with short-lived pests and pathogens through a patchwork of intra-organismal phenotypes7. However, there is no clear proof that large-statured trees consist of a genetic mosaic of clonally distinct cell lineages within and between branches. Through this case study of oak, we demonstrate the accumulation and transmission of somatic mutations and the expansion of disease-resistance gene families in trees.


Assuntos
Genoma de Planta/genética , Quercus/genética , Evolução Biológica , DNA de Plantas/genética , Variação Genética/genética , Longevidade/genética , Mutação , Filogenia , Análise de Sequência de DNA
11.
Nat Genet ; 50(6): 772-777, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29713014

RESUMO

Roses have high cultural and economic importance as ornamental plants and in the perfume industry. We report the rose whole-genome sequencing and assembly and resequencing of major genotypes that contributed to rose domestication. We generated a homozygous genotype from a heterozygous diploid modern rose progenitor, Rosa chinensis 'Old Blush'. Using single-molecule real-time sequencing and a meta-assembly approach, we obtained one of the most comprehensive plant genomes to date. Diversity analyses highlighted the mosaic origin of 'La France', one of the first hybrids combining the growth vigor of European species and the recurrent blooming of Chinese species. Genomic segments of Chinese ancestry identified new candidate genes for recurrent blooming. Reconstructing regulatory and secondary metabolism pathways allowed us to propose a model of interconnected regulation of scent and flower color. This genome provides a foundation for understanding the mechanisms governing rose traits and should accelerate improvement in roses, Rosaceae and ornamentals.


Assuntos
Genoma de Planta , Rosa/genética , Domesticação , Flores/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Genótipo , Proteínas de Plantas/genética , Análise de Sequência de DNA/métodos , Sequenciamento Completo do Genoma/métodos
12.
Mol Biol Evol ; 35(7): 1712-1727, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29746697

RESUMO

The budding yeast Saccharomyces cerevisiae can be found in the wild and is also frequently associated with human activities. Despite recent insights into the phylogeny of this species, much is still unknown about how evolutionary processes related to anthropogenic niches have shaped the genomes and phenotypes of S. cerevisiae. To address this question, we performed population-level sequencing of 82 S. cerevisiae strains from wine, flor, rum, dairy products, bakeries, and the natural environment (oak trees). These genomic data enabled us to delineate specific genetic groups corresponding to the different ecological niches and revealed high genome content variation across the groups. Most of these strains, compared with the reference genome, possessed additional genetic elements acquired by introgression or horizontal transfer, several of which were population-specific. In addition, several genomic regions in each population showed evidence of nonneutral evolution, as shown by high differentiation, or of selective sweeps including genes with key functions in these environments (e.g., amino acid transport for wine yeast). Linking genetics to lifestyle differences and metabolite traits has enabled us to elucidate the genetic basis of several niche-specific population traits, such as growth on galactose for cheese strains. These data indicate that yeast has been subjected to various divergent selective pressures depending on its niche, requiring the development of customized genomes for better survival in these environments. These striking genome dynamics associated with local adaptation and domestication reveal the remarkable plasticity of the S. cerevisiae genome, revealing this species to be an amazing complex of specialized populations.


Assuntos
Adaptação Biológica , Evolução Biológica , Domesticação , Alimentos Fermentados/microbiologia , Saccharomyces cerevisiae/genética , Variações do Número de Cópias de DNA , Fermentação , Transferência Genética Horizontal , Genoma Fúngico , Seleção Genética
13.
Harmful Algae ; 73: 58-71, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29602507

RESUMO

Phylogenetic relationships among heterocytous genera (the Nostocales order) have been profoundly modified since the use of polyphasic approaches that include molecular data. There is nonetheless still ample scope for improving phylogenetic delineations of genera with broad ecological distributions, particularly by integrating specimens from specific or up-to-now poorly sampled habitats. In this context, we studied 36 new isolates belonging to Chrysosporum, Dolichospermum, Anabaena, Anabaenopsis, and Cylindrospermopsis from freshwater ecosystems of Burkina-Faso, Senegal, and Mayotte Island. Studying strains from these habitats is of particular interest as we suspected different range of salt variations during underwent periods of drought in small ponds and lakes. Such salt variation may cause different adaptation to salinity. We then undertook a polyphasic approach, combining molecular phylogenies, morphological analyses, and physiological measurements of tolerance to salinity. Molecular phylogenies of 117 Nostocales sequences showed that the 36 studied strains were distributed in seven lineages: Dolichospermum, Chrysosporum, Cylindrospermopsis/Raphidiopsis, Anabaenopsis, Anabaena sphaerica var tenuis/Sphaerospermopsis, and two independent Anabaena sphaerica lineages. Physiological data were congruent with molecular results supporting the separation into seven lineages. In an evolutionary context, salinity tolerance can be used as an integrative marker to reinforce the delineation of some cyanobacterial lineages. The history of this physiological trait contributes to a better understanding of processes leading to the divergence of cyanobacteria. In this study, most of the cyanobacterial strains isolated from freshwater environments were salt-tolerant, thus suggesting this trait constituted an ancestral trait of the heterocytous cyanobacteria and that it was probably lost two times secondarily and independently in the ancestor of Dolichospermum and of Cylindrospermopsis.


Assuntos
Cianobactérias/efeitos dos fármacos , Cianobactérias/genética , Água Doce/microbiologia , Filogenia , Tolerância ao Sal , Sequência de Bases , Água Doce/química , RNA Bacteriano , RNA Ribossômico 16S/genética , Cloreto de Sódio/química , Cloreto de Sódio/toxicidade
14.
Sci Rep ; 7(1): 11816, 2017 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-28947760

RESUMO

Emergence of polyphagous herbivorous insects entails significant adaptation to recognize, detoxify and digest a variety of host-plants. Despite of its biological and practical importance - since insects eat 20% of crops - no exhaustive analysis of gene repertoires required for adaptations in generalist insect herbivores has previously been performed. The noctuid moth Spodoptera frugiperda ranks as one of the world's worst agricultural pests. This insect is polyphagous while the majority of other lepidopteran herbivores are specialist. It consists of two morphologically indistinguishable strains ("C" and "R") that have different host plant ranges. To describe the evolutionary mechanisms that both enable the emergence of polyphagous herbivory and lead to the shift in the host preference, we analyzed whole genome sequences from laboratory and natural populations of both strains. We observed huge expansions of genes associated with chemosensation and detoxification compared with specialist Lepidoptera. These expansions are largely due to tandem duplication, a possible adaptation mechanism enabling polyphagy. Individuals from natural C and R populations show significant genomic differentiation. We found signatures of positive selection in genes involved in chemoreception, detoxification and digestion, and copy number variation in the two latter gene families, suggesting an adaptive role for structural variation.


Assuntos
Adaptação Fisiológica/genética , Genoma de Inseto , Herbivoria , Spodoptera/genética , Animais , Produtos Agrícolas , Larva/genética , Especificidade da Espécie
15.
PLoS Genet ; 13(6): e1006777, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28594822

RESUMO

Root-knot nematodes (genus Meloidogyne) exhibit a diversity of reproductive modes ranging from obligatory sexual to fully asexual reproduction. Intriguingly, the most widespread and devastating species to global agriculture are those that reproduce asexually, without meiosis. To disentangle this surprising parasitic success despite the absence of sex and genetic exchanges, we have sequenced and assembled the genomes of three obligatory ameiotic and asexual Meloidogyne. We have compared them to those of relatives able to perform meiosis and sexual reproduction. We show that the genomes of ameiotic asexual Meloidogyne are large, polyploid and made of duplicated regions with a high within-species average nucleotide divergence of ~8%. Phylogenomic analysis of the genes present in these duplicated regions suggests that they originated from multiple hybridization events and are thus homoeologs. We found that up to 22% of homoeologous gene pairs were under positive selection and these genes covered a wide spectrum of predicted functional categories. To biologically assess functional divergence, we compared expression patterns of homoeologous gene pairs across developmental life stages using an RNAseq approach in the most economically important asexually-reproducing nematode. We showed that >60% of homoeologous gene pairs display diverged expression patterns. These results suggest a substantial functional impact of the genome structure. Contrasting with high within-species nuclear genome divergence, mitochondrial genome divergence between the three ameiotic asexuals was very low, signifying that these putative hybrids share a recent common maternal ancestor. Transposable elements (TE) cover a ~1.7 times higher proportion of the genomes of the ameiotic asexual Meloidogyne compared to the sexual relative and might also participate in their plasticity. The intriguing parasitic success of asexually-reproducing Meloidogyne species could be partly explained by their TE-rich composite genomes, resulting from allopolyploidization events, and promoting plasticity and functional divergence between gene copies in the absence of sex and meiosis.


Assuntos
Variação Genética , Genoma Helmíntico , Hibridização Genética , Poliploidia , Reprodução Assexuada , Tylenchoidea/genética , Animais , Elementos de DNA Transponíveis , Genoma Mitocondrial , Polimorfismo Genético , Seleção Genética
16.
Mol Ecol Resour ; 16(1): 254-65, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25944057

RESUMO

The 1.5 Gbp/2C genome of pedunculate oak (Quercus robur) has been sequenced. A strategy was established for dealing with the challenges imposed by the sequencing of such a large, complex and highly heterozygous genome by a whole-genome shotgun (WGS) approach, without the use of costly and time-consuming methods, such as fosmid or BAC clone-based hierarchical sequencing methods. The sequencing strategy combined short and long reads. Over 49 million reads provided by Roche 454 GS-FLX technology were assembled into contigs and combined with shorter Illumina sequence reads from paired-end and mate-pair libraries of different insert sizes, to build scaffolds. Errors were corrected and gaps filled with Illumina paired-end reads and contaminants detected, resulting in a total of 17,910 scaffolds (>2 kb) corresponding to 1.34 Gb. Fifty per cent of the assembly was accounted for by 1468 scaffolds (N50 of 260 kb). Initial comparison with the phylogenetically related Prunus persica gene model indicated that genes for 84.6% of the proteins present in peach (mean protein coverage of 90.5%) were present in our assembly. The second and third steps in this project are genome annotation and the assignment of scaffolds to the oak genetic linkage map. In accordance with the Bermuda and Fort Lauderdale agreements and the more recent Toronto Statement, the oak genome data have been released into public sequence repositories in advance of publication. In this presubmission paper, the oak genome consortium describes its principal lines of work and future directions for analyses of the nature, function and evolution of the oak genome.


Assuntos
Genoma de Planta , Quercus/genética , Modelos Genéticos , Anotação de Sequência Molecular , Filogenia , Quercus/classificação , Análise de Sequência de DNA
17.
Sci Adv ; 1(10): e1501150, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26702449

RESUMO

Relics of ancient infections are abundant in eukaryote genomes, but little is known about how they evolve when they confer a functional benefit on their host. We show here, for the first time, that the virus-like particles shown to protect Venturia canescens eggs against host immunity are derived from a nudivirus genome incorporated by the parasitic wasp into its own genetic material. Nudivirus hijacking was also at the origin of protective particles from braconid wasps. However, we show here that the viral genes produce "liposomes" that wrap and deliver V. canescens virulence proteins, whereas the particles are used as gene transfer agents in braconid wasps. Our findings indicate that virus domestication has occurred repeatedly during parasitic wasp evolution but with different evolutionary trajectories after endogenization, resulting in different virulence molecule delivery strategies.

18.
Mol Ecol ; 24(21): 5412-27, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26248006

RESUMO

The domestication of the wine yeast Saccharomyces cerevisiae is thought to be contemporary with the development and expansion of viticulture along the Mediterranean basin. Until now, the unavailability of wild lineages prevented the identification of the closest wild relatives of wine yeasts. Here, we enlarge the collection of natural lineages and employ whole-genome data of oak-associated wild isolates to study a balanced number of anthropic and natural S. cerevisiae strains. We identified industrial variants and new geographically delimited populations, including a novel Mediterranean oak population. This population is the closest relative of the wine lineage as shown by a weak population structure and further supported by genomewide population analyses. A coalescent model considering partial isolation with asymmetrical migration, mostly from the wild group into the Wine group, and population growth, was found to be best supported by the data. Importantly, divergence time estimates between the two populations agree with historical evidence for winemaking. We show that three horizontally transmitted regions, previously described to contain genes relevant to wine fermentation, are present in the Wine group but not in the Mediterranean oak group. This represents a major discontinuity between the two populations and is likely to denote a domestication fingerprint in wine yeasts. Taken together, these results indicate that Mediterranean oaks harbour the wild genetic stock of domesticated wine yeasts.


Assuntos
Evolução Molecular , Genética Populacional , Genoma Fúngico , Saccharomyces cerevisiae/genética , Vinho/microbiologia , DNA Fúngico/genética , DNA Espaçador Ribossômico/genética , Europa (Continente) , Variação Genética , Região do Mediterrâneo , Repetições de Microssatélites , Modelos Genéticos , Filogenia , Polimorfismo de Nucleotídeo Único , Quercus/microbiologia , Análise de Sequência de DNA
19.
Mol Ecol ; 24(21): 5460-74, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26224534

RESUMO

The Indo-Malayan bioregion has provided some of the most spectacular discoveries of new vertebrate species (e.g. saola, khanyou, bare-faced bulbul) over the last 25 years. Yet, very little is known about the processes that led to the current biodiversity in this region. We reconstructed the phylogeographic history of a group of closely related passerines, the Alophoixus bulbuls. These birds are continuously distributed in Indo-Malaya around the Thailand lowlands such that their distribution resembles a ring. Our analyses revealed a single colonization event of the mainland from Sundaland with sequential divergence of taxa from southwest to northeast characterized by significant gene flow between parapatric taxa, and reduced or ancient gene flow involving the two taxa at the extremities of the ring. We detected evidence of population expansion in two subspecies, including one that was involved in the closing of the ring. Hence, our analyses indicate that the diversification pattern of Alophoixus bulbuls fits a ring species model driven by geographic isolation. To our knowledge, the Alophoixus bulbuls represent the first case of a putative broken ring species complex in Indo-Malaya. We also discuss the implications of our results on our understanding of the biogeography in Indo-Malaya.


Assuntos
Especiação Genética , Modelos Genéticos , Passeriformes/classificação , Animais , Teorema de Bayes , Núcleo Celular/genética , DNA Mitocondrial/genética , Fluxo Gênico , Genética Populacional , Filogeografia , Análise de Sequência de DNA , Tailândia
20.
BMC Evol Biol ; 15: 71, 2015 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-25900417

RESUMO

BACKGROUND: This study aims to reconstruct the evolutionary history of African shrews referred to the Crocidura olivieri complex. We tested the respective role of forest retraction/expansion during the Pleistocene, rivers (allopatric models), ecological gradients (parapatric model) and anthropogenic factors in explaining the distribution and diversification within this species complex. We sequenced three mitochondrial and four nuclear markers from 565 specimens encompassing the known distribution of the complex, i.e. from Morocco to Egypt and south to Mozambique. We used Bayesian phylogenetic inference, genetic structure analyses and divergence time estimates to assess the phylogenetic relationships and evolutionary history of these animals. RESULTS: The C. olivieri complex (currently composed of C. olivieri, C. fulvastra, C. viaria and C. goliath) can be segregated into eight principal geographical clades, most exhibiting parapatric distributions. A decrease in genetic diversity was observed between central and western African clades and a marked signal of population expansion was detected for a broadly distributed clade occurring across central and eastern Africa and portions of Egypt (clade IV). The main cladogenesis events occurred within the complex between 1.37 and 0.48 Ma. Crocidura olivieri sensu stricto appears polyphyletic and C. viaria and C. fulvastra were not found to be monophyletic. CONCLUSIONS: Climatic oscillations over the Pleistocene probably played a major role in shaping the genetic diversity within this species complex. Different factors can explain their diversification, including Pleistocene forest refuges, riverine barriers and differentiation along environmental gradients. The earliest postulated members of the complex originated in central/eastern Africa and the first radiations took place in rain forests of the Congo Basin. A dramatic shift in the ecological requirements in early members of the complex, in association with changing environments, took place sometime after 1.13 Ma. Some lineages then colonized a substantial portion of the African continent, including a variety of savannah and forest habitats. The low genetic divergence of certain populations, some in isolated localities, can be explained by their synanthropic habits. This study underlines the need to revise the taxonomy of the C. olivieri complex.


Assuntos
Filogeografia , Musaranhos/genética , África , Animais , Teorema de Bayes , Evolução Biológica , Ecologia , Ecossistema , Florestas , Deriva Genética , Especiação Genética , Variação Genética , Filogenia , Musaranhos/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA