Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Microbiome ; 12(1): 1, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38167150

RESUMO

BACKGROUND: The rhizosheath, a cohesive soil layer firmly adhering to plant roots, plays a vital role in facilitating water and mineral uptake. In pearl millet, rhizosheath formation is genetically controlled and influenced by root exudates. Here, we investigated the impact of root exudates on the microbiota composition, interactions, and assembly processes, and rhizosheath structure in pearl millet using four distinct lines with contrasting soil aggregation abilities. RESULTS: Utilizing 16S rRNA gene and ITS metabarcoding for microbiota profiling, coupled with FTICR-MS metabonomic analysis of metabolite composition in distinct plant compartments and root exudates, we revealed substantial disparities in microbial diversity and interaction networks. The ß-NTI analysis highlighted bacterial rhizosphere turnover driven primarily by deterministic processes, showcasing prevalent homogeneous selection in root tissue (RT) and root-adhering soil (RAS). Conversely, fungal communities were more influenced by stochastic processes. In bulk soil assembly, a combination of deterministic and stochastic mechanisms shapes composition, with deterministic factors exerting a more pronounced role. Metabolic profiles across shoots, RT, and RAS in different pearl millet lines mirrored their soil aggregation levels, emphasizing the impact of inherent plant traits on microbiota composition and unique metabolic profiles in RT and exudates. Notably, exclusive presence of antimicrobial compounds, including DIMBOA and H-DIMBOA, emerged in root exudates and RT of low aggregation lines. CONCLUSIONS: This research underscores the pivotal influence of root exudates in shaping the root-associated microbiota composition across pearl millet lines, entwined with their soil aggregation capacities. These findings underscore the interconnectedness of root exudates and microbiota, which jointly shape rhizosheath structure, deepening insights into soil-plant-microbe interactions and ecological processes shaping rhizosphere microbial communities. Deciphering plant-microbe interactions and their contribution to soil aggregation and microbiota dynamics holds promise for the advancement of sustainable agricultural strategies. Video Abstract.


Assuntos
Microbiota , Pennisetum , Pennisetum/genética , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Raízes de Plantas/microbiologia , Solo/química , Plantas/microbiologia , Exsudatos e Transudatos , Microbiologia do Solo , Rizosfera
2.
Plant J ; 103(4): 1460-1476, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32394539

RESUMO

In oxygenic photosynthetic organisms, excluding angiosperms, flavodiiron proteins (FDPs) catalyze light-dependent reduction of O2 to H2 O. This alleviates electron pressure on the photosynthetic apparatus and protects it from photodamage. In Synechocystis sp. PCC 6803, four FDP isoforms function as hetero-oligomers of Flv1 and Flv3 and/or Flv2 and Flv4. An alternative electron transport pathway mediated by the NAD(P)H dehydrogenase-like complex (NDH-1) also contributes to redox hemostasis and the photoprotection of photosynthesis. Four NDH-1 types have been characterized in cyanobacteria: NDH-11 and NDH-12 , which function in respiration; and NDH-13 and NDH-14 , which function in CO2 uptake. All four types are involved in cyclic electron transport. Along with single FDP mutants (∆flv1 and Δflv3) and the double NDH-1 mutants (∆d1d2, which is deficient in NDH-11,2 and ∆d3d4, which is deficient in NDH-13,4 ), we studied triple mutants lacking one of Flv1 or Flv3, and NDH-11,2 or NDH-13,4 . We show that the presence of either Flv1/3 or NDH-11,2 , but not NDH-13,4 , is indispensable for survival during changes in growth conditions from high CO2 /moderate light to low CO2 /high light. Our results show functional redundancy between FDPs and NDH-11,2 under the studied conditions. We suggest that ferredoxin probably functions as a primary electron donor to both Flv1/3 and NDH-11,2 , allowing their functions to be dynamically coordinated for efficient oxidation of photosystem I and for photoprotection under variable CO2 and light availability.


Assuntos
Proteínas de Bactérias/metabolismo , Synechocystis/metabolismo , Proteínas de Bactérias/fisiologia , Luz , Oxirredução , Complexo de Proteína do Fotossistema I/metabolismo , Tilacoides/metabolismo
3.
PLoS One ; 14(7): e0214182, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31329591

RESUMO

Pearl millet is able to withstand dry and hot conditions and plays an important role for food security in arid and semi-arid areas of Africa and India. However, low soil fertility and drought constrain pearl millet yield. One target to address these constraints through agricultural practices or breeding is root system architecture. In this study, in order to easily phenotype the root system in field conditions, we developed a model to predict root length density (RLD) of pearl millet plants from root intersection densities (RID) counted on a trench profile in field conditions. We identified root orientation as an important parameter to improve the relationship between RID and RLD. Root orientation was notably found to depend on soil depth and to differ between thick roots (more anisotropic with depth) and fine roots (isotropic at all depths). We used our model to study pearl millet root system response to drought and showed that pearl millet reorients its root growth toward deeper soil layers that retain more water in these conditions. Overall, this model opens ways for the characterization of the impact of environmental factors and management practices on pearl millet root system development.


Assuntos
Pennisetum/fisiologia , Raízes de Plantas/fisiologia , Água/metabolismo , Agricultura , Secas , Modelos Biológicos , Pennisetum/anatomia & histologia , Raízes de Plantas/anatomia & histologia , Solo/química , Estresse Fisiológico
4.
PLoS One ; 13(10): e0201635, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30359386

RESUMO

Pearl millet plays a major role in food security in arid and semi-arid areas of Africa and India. However, it lags behind the other cereal crops in terms of genetic improvement. The recent sequencing of its genome opens the way to the use of modern genomic tools for breeding. Our study aimed at identifying genetic components involved in early drought stress tolerance as a first step toward the development of improved pearl millet varieties or hybrids. A panel of 188 inbred lines from West Africa was phenotyped under early drought stress and well-irrigated conditions. We found a strong impact of drought stress on yield components. This impact was variable between inbred lines. We then performed an association analysis with a total of 392,493 SNPs identified using Genotyping-by-Sequencing (GBS). Correcting for genetic relatedness, genome wide association study identified QTLs for biomass production in early drought stress conditions and for stay-green trait. In particular, genes involved in the sirohaem and wax biosynthesis pathways were found to co-locate with two of these QTLs. Our results might contribute to breed pearl millet lines with improved yield under drought stress.


Assuntos
Estudo de Associação Genômica Ampla , Pennisetum/genética , Locos de Características Quantitativas/genética , África , Biomassa , Mapeamento Cromossômico , Secas , Técnicas de Genotipagem , Índia , Pennisetum/crescimento & desenvolvimento , Fenótipo , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único
5.
Agron Sustain Dev ; 38(6): 57, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30873222

RESUMO

Soil degradation in semi-arid West Africa can be reversed through an intensified application of organic matter, especially on coarse soils. Woody perennials have been promoted in the region to secure organic matter sources and improve soil productive capacity, yet the mechanisms by which perennials provide benefits to soils and crops remain poorly understood, and no effective, generalizable agronomic recommendations exist. Here, we reviewed the effects of trees and shrubs on soil properties and on crop yields in semi-arid West Africa (< 1000 mm year-1). Specific objectives of this meta-analysis were to (i) describe and (ii) quantify the effects of the presence of woody perennials and of ramial wood amendments on crop productivity and soil characteristics, and (iii) identify general recommendations on the integration of perennials with crops. An iterative keyword search was conducted to gather relevant literature. The search string consisted of four parts: source, practice, responses, and countries of interest. In total, 26 references on agroforestry parklands and 21 on woody amendments were included in the meta-database (314 entries, 155 for parklands, and 159 for ramial wood). We show that (1) the presence of shrubs and trees on agricultural fields had an overall positive but variable effect on soil total C (i.e. + 20 to 75%); (2) millet and sorghum yields were often higher in the presence of shrubs (- 25 to + 120%); (3) more variability was observed in the presence of trees (- 100 to + 200%); and (4) the use of shrub- and tree-based ramial wood resulted in equal or higher cereal yields as compared to the control (- 30 to + 100%). Upscaling the use of biodiversity-driven processes in farming systems of West Africa may provide benefits to overall ecosystems, but species' choice and trade-offs perceived at the farm level, including labour management and low ramial wood availability, should be addressed through future research.

6.
Front Plant Sci ; 8: 1288, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28798755

RESUMO

Root exudation contributes to soil carbon allocation and also to microbial C and energy supply, which subsequently impacts soil aggregation around roots. Biologically-driven soil structural formation is an important driver of soil fertility. Plant genetic determinants of exudation and more generally of factors promoting rhizosphere soil aggregation are largely unknown. Here, we characterized rhizosphere aggregation in a panel of 86 pearl millet inbred lines using a ratio of root-adhering soil dry mass per root tissue dry mass (RAS/RT). This ratio showed significant variations between lines, with a roughly 2-fold amplitude between lowest and highest average values. For 9 lines with contrasting aggregation properties, we then compared the bacterial diversity and composition in root-adhering soil. Bacterial α-diversity metrics increased with the "RAS/RT ratio." Regarding taxonomic composition, the Rhizobiales were stimulated in lines showing high aggregation level whereas Bacillales were more abundant in lines with low ratio. 184 strains of cultivable exopolysaccharides-producing bacteria have been isolated from the rhizosphere of some lines, including members from Rhizobiales and Bacillales. However, at this stage, we could not find a correlation between abundance of EPS-producing species in bacterial communities and the ratio RAS/RT. These results illustrated the impact of cereals genetic trait variation on soil physical properties and microbial diversity. This opens the possibility of considering plant breeding to help management of soil carbon content and physical characteristics through carbon rhizodeposition in soil.

7.
Biochim Biophys Acta ; 1857(1): 23-33, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26435390

RESUMO

Photosynthetic water oxidation to molecular oxygen is carried out by photosystem II (PSII) over a reaction cycle involving four photochemical steps that drive the oxygen-evolving complex through five redox states Si (i = 0,…, 4). For understanding the catalytic strategy of biological water oxidation it is important to elucidate the energetic landscape of PSII and in particular that of the final S4 → S0 transition. In this short-lived chemical step the four oxidizing equivalents accumulated in the preceding photochemical events are used up to form molecular oxygen, two protons are released and at least one substrate water molecule binds to the Mn4CaO5 cluster. In this study we probed the probability to form S4 from S0 and O2 by incubating YD-less PSII in the S0 state for 2­3 days in the presence of (18)O2 and H2(16)O. The absence of any measurable (16,18)O2 formation by water-exchange in the S4 state suggests that the S4 state is hardly ever populated. On the basis of a detailed analysis we determined that the equilibrium constant K of the S4 → S0 transition is larger than 1.0 × 10(7) so that this step is highly exergonic. We argue that this finding is consistent with current knowledge of the energetics of the S0 to S4 reactions, and that the high exergonicity is required for the kinetic efficiency of PSII.


Assuntos
Oxigênio/metabolismo , Fotossíntese , Entropia , Oxirredução , Complexo de Proteína do Fotossistema II/metabolismo
8.
J Biol Chem ; 290(13): 8550-8, 2015 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-25666617

RESUMO

The heterodimeric [NiFe] hydrogenase from Desulfovibrio fructosovorans catalyzes the reversible oxidation of H2 into protons and electrons. The catalytic intermediates have been attributed to forms of the active site (NiSI, NiR, and NiC) detected using spectroscopic methods under potentiometric but non-catalytic conditions. Here, we produced variants by replacing the conserved Thr-18 residue in the small subunit with Ser, Val, Gln, Gly, or Asp, and we analyzed the effects of these mutations on the kinetic (H2 oxidation, H2 production, and H/D exchange), spectroscopic (IR, EPR), and structural properties of the enzyme. The mutations disrupt the H-bond network in the crystals and have a strong effect on H2 oxidation and H2 production turnover rates. However, the absence of correlation between activity and rate of H/D exchange in the series of variants suggests that the alcoholic group of Thr-18 is not necessarily a proton relay. Instead, the correlation between H2 oxidation and production activity and the detection of the NiC species in reduced samples confirms that NiC is a catalytic intermediate and suggests that Thr-18 is important to stabilize the local protein structure of the active site ensuring fast NiSI-NiC-NiR interconversions during H2 oxidation/production.


Assuntos
Proteínas de Bactérias/química , Desulfovibrio/enzimologia , Hidrogenase/química , Sequência de Aminoácidos , Substituição de Aminoácidos , Biocatálise , Domínio Catalítico , Cristalografia por Raios X , Estabilidade Enzimática , Ligação de Hidrogênio , Cinética , Modelos Moleculares , Oxirredução , Treonina/química
9.
Proc Natl Acad Sci U S A ; 111(30): 11205-10, 2014 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-25002499

RESUMO

Flavodiiron proteins are known to have crucial and specific roles in photoprotection of photosystems I and II in cyanobacteria. The filamentous, heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120 contains, besides the four flavodiiron proteins Flv1A, Flv2, Flv3A, and Flv4 present in vegetative cells, two heterocyst-specific flavodiiron proteins, Flv1B and Flv3B. Here, we demonstrate that Flv3B is responsible for light-induced O2 uptake in heterocysts, and that the absence of the Flv3B protein severely compromises the growth of filaments in oxic, but not in microoxic, conditions. It is further demonstrated that Flv3B-mediated photosynthetic O2 uptake has a distinct role in heterocysts which cannot be substituted by respiratory O2 uptake in the protection of nitrogenase from oxidative damage and, thus, in an efficient provision of nitrogen to filaments. In line with this conclusion, the Δflv3B strain has reduced amounts of nitrogenase NifHDK subunits and shows multiple symptoms of nitrogen deficiency in the filaments. The apparent imbalance of cytosolic redox state in Δflv3B heterocysts also has a pronounced influence on the amounts of different transcripts and proteins. Therefore, an O2-related mechanism for control of gene expression is suggested to take place in heterocysts.


Assuntos
Anabaena/metabolismo , Proteínas de Bactérias/metabolismo , Flavoproteínas/metabolismo , Metaloproteínas/metabolismo , Fotossíntese/fisiologia , Anabaena/genética , Proteínas de Bactérias/genética , Flavoproteínas/genética , Regulação Bacteriana da Expressão Gênica/fisiologia , Ferro/metabolismo , Metaloproteínas/genética , Nitrogenase/genética , Nitrogenase/metabolismo , Oxirredução
10.
Plant Physiol ; 165(3): 1344-1352, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24820024

RESUMO

Biological conversion of solar energy into hydrogen is naturally realized by some microalgae species due to a coupling between the photosynthetic electron transport chain and a plastidial hydrogenase. While promising for the production of clean and sustainable hydrogen, this process requires improvement to be economically viable. Two pathways, called direct and indirect photoproduction, lead to sustained hydrogen production in sulfur-deprived Chlamydomonas reinhardtii cultures. The indirect pathway allows an efficient time-based separation of O2 and H2 production, thus overcoming the O2 sensitivity of the hydrogenase, but its activity is low. With the aim of identifying the limiting step of hydrogen production, we succeeded in overexpressing the plastidial type II NAD(P)H dehydrogenase (NDA2). We report that transplastomic strains overexpressing NDA2 show an increased activity of nonphotochemical reduction of plastoquinones (PQs). While hydrogen production by the direct pathway, involving the linear electron flow from photosystem II to photosystem I, was not affected by NDA2 overexpression, the rate of hydrogen production by the indirect pathway was increased in conditions, such as nutrient limitation, where soluble electron donors are not limiting. An increased intracellular starch was observed in response to nutrient deprivation in strains overexpressing NDA2. It is concluded that activity of the indirect pathway is limited by the nonphotochemical reduction of PQs, either by the pool size of soluble electron donors or by the PQ-reducing activity of NDA2 in nutrient-limited conditions. We discuss these data in relation to limitations and biotechnological improvement of hydrogen photoproduction in microalgae.

11.
Proc Natl Acad Sci U S A ; 110(10): 4111-6, 2013 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-23431195

RESUMO

Cyanobacterial flavodiiron proteins (FDPs; A-type flavoprotein, Flv) comprise, besides the ß-lactamase-like and flavodoxin domains typical for all FDPs, an extra NAD(P)H:flavin oxidoreductase module and thus differ from FDPs in other Bacteria and Archaea. Synechocystis sp. PCC 6803 has four genes encoding the FDPs. Flv1 and Flv3 function as an NAD(P)H:oxygen oxidoreductase, donating electrons directly to O2 without production of reactive oxygen species. Here we show that the Flv1 and Flv3 proteins are crucial for cyanobacteria under fluctuating light, a typical light condition in aquatic environments. Under constant-light conditions, regardless of light intensity, the Flv1 and Flv3 proteins are dispensable. In contrast, under fluctuating light conditions, the growth and photosynthesis of the Δflv1(A) and/or Δflv3(A) mutants of Synechocystis sp. PCC 6803 and Anabaena sp. PCC 7120 become arrested, resulting in cell death in the most severe cases. This reaction is mainly caused by malfunction of photosystem I and oxidative damage induced by reactive oxygen species generated during abrupt short-term increases in light intensity. Unlike higher plants that lack the FDPs and use the Proton Gradient Regulation 5 to safeguard photosystem I, the cyanobacterial homolog of Proton Gradient Regulation 5 is shown not to be crucial for growth under fluctuating light. Instead, the unique Flv1/Flv3 heterodimer maintains the redox balance of the electron transfer chain in cyanobacteria and provides protection for photosystem I under fluctuating growth light. Evolution of unique cyanobacterial FDPs is discussed as a prerequisite for the development of oxygenic photosynthesis.


Assuntos
Proteínas de Bactérias/metabolismo , Flavoproteínas/metabolismo , Synechocystis/crescimento & desenvolvimento , Synechocystis/metabolismo , Anabaena/genética , Anabaena/crescimento & desenvolvimento , Anabaena/metabolismo , Anabaena/efeitos da radiação , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Dióxido de Carbono/metabolismo , Flavoproteínas/química , Flavoproteínas/genética , Genes Bacterianos , Luz , Mutação , Oxigênio/metabolismo , Fotossíntese , Multimerização Proteica , Synechocystis/genética , Synechocystis/efeitos da radiação
12.
Microbiologyopen ; 1(4): 349-61, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23233392

RESUMO

Hydrogen production by microorganisms is often described as a promising sustainable and clean energy source, but still faces several obstacles, which prevent practical application. Among them, oxygen sensitivity of hydrogenases represents one of the major limitations hampering the biotechnological implementation of photobiological production processes. Here, we describe a hierarchical biodiversity-based approach, including a chemochromic screening of hydrogenase activity of hundreds of bacterial strains collected from several ecosystems, followed by mass spectrometry measurements of hydrogenase activity of a selection of the H(2)-oxidizing bacterial strains identified during the screen. In all, 131 of 1266 strains, isolated from cereal rhizospheres and basins containing irradiating waste, were scored as H(2)-oxidizing bacteria, including Pseudomonas sp., Serratia sp., Stenotrophomonas sp., Enterobacter sp., Rahnella sp., Burkholderia sp., and Ralstonia sp. isolates. Four free-living N(2)-fixing bacteria harbored a high and oxygen-tolerant hydrogenase activity, which was not fully inhibited within entire cells up to 150-250 µmol/L O(2) concentration or within soluble protein extracts up to 25-30 µmol/L. The only hydrogenase-related genes that we could reveal in these strains were of the hyc type (subunits of formate hydrogenlyase complex). The four free-living N(2)-fixing bacteria were closely related to Enterobacter radicincitans based on the sequences of four genes (16S rRNA, rpoB, hsp60, and hycE genes). These results should bring interesting prospects for microbial biohydrogen production and might have ecophysiological significance for bacterial adaptation to the oxic-anoxic interfaces in the rhizosphere.


Assuntos
Enterobacter/enzimologia , Oxirredutases/isolamento & purificação , Poaceae/microbiologia , Sequência de Bases , DNA Bacteriano/química , DNA Bacteriano/genética , Dados de Sequência Molecular , Oxirredutases/química , Oxirredutases/genética , Filogenia , RNA Ribossômico 16S/química , RNA Ribossômico 16S/genética , Rizosfera , Alinhamento de Sequência , Análise de Sequência de DNA
13.
J Bacteriol ; 194(19): 5423-33, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22865847

RESUMO

We have thoroughly investigated the abrB2 gene (sll0822) encoding an AbrB-like regulator in the wild-type strain of the model cyanobacterium Synechocystis strain PCC6803. We report that abrB2 is expressed from an active but atypical promoter that possesses an extended -10 element (TGTAATAT) that compensates for the absence of a -35 box. Strengthening the biological significance of these data, we found that the occurrence of an extended -10 promoter box and the absence of a -35 element are two well-conserved features in abrB2 genes from other cyanobacteria. We also show that AbrB2 is an autorepressor that is dispensable to cell growth under standard laboratory conditions. Furthermore, we demonstrate that AbrB2 also represses the hox operon, which encodes the Ni-Fe hydrogenase of biotechnological interest, and that the hox operon is weakly expressed even though it possesses the two sequences resembling canonical -10 and -35 promoter boxes. In both the AbrB2-repressed promoters of the abrB2 gene and the hox operon, we found a repeated DNA motif [TT-(N(5))-AAC], which could be involved in AbrB2 repression. Supporting this hypothesis, we found that a TT-to-GG mutation of one of these elements increased the activity of the abrB2 promoter. We think that our abrB2-deleted mutant with increased expression of the hox operon and hydrogenase activity, together with the reporter plasmids we constructed to analyze the abrB2 gene and the hox operon, will serve as useful tools to decipher the function and the regulation of hydrogen production in Synechocystis.


Assuntos
Regulação Bacteriana da Expressão Gênica/fisiologia , Hidrogênio/metabolismo , Hidrogenase/metabolismo , Óperon/fisiologia , Synechocystis/metabolismo , Sequência de Bases , DNA Bacteriano/genética , DNA Complementar/genética , Determinismo Genético , Hidrogenase/genética , Dados de Sequência Molecular , Mutação , Regiões Promotoras Genéticas
14.
Mol Biol Evol ; 29(12): 3625-39, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22826458

RESUMO

The unicellular green alga Chlamydomonas reinhardtii is a prime model for deciphering processes occurring in the intracellular compartments of the photosynthetic cell. Organelle-specific proteomic studies have started to delineate its various subproteomes, but sequence-based prediction software is necessary to assign proteins subcellular localizations at whole genome scale. Unfortunately, existing tools are oriented toward land plants and tend to mispredict the localization of nuclear-encoded algal proteins, predicting many chloroplast proteins as mitochondrion targeted. We thus developed a new tool called PredAlgo that predicts intracellular localization of those proteins to one of three intracellular compartments in green algae: the mitochondrion, the chloroplast, and the secretory pathway. At its core, a neural network, trained using carefully curated sets of C. reinhardtii proteins, divides the N-terminal sequence into overlapping 19-residue windows and scores the probability that they belong to a cleavable targeting sequence for one of the aforementioned organelles. A targeting prediction is then deduced for the protein, and a likely cleavage site is predicted based on the shape of the scoring function along the N-terminal sequence. When assessed on an independent benchmarking set of C. reinhardtii sequences, PredAlgo showed a highly improved discrimination capacity between chloroplast- and mitochondrion-localized proteins. Its predictions matched well the results of chloroplast proteomics studies. When tested on other green algae, it gave good results with Chlorophyceae and Trebouxiophyceae but tended to underpredict mitochondrial proteins in Prasinophyceae. Approximately 18% of the nuclear-encoded C. reinhardtii proteome was predicted to be targeted to the chloroplast and 15% to the mitochondrion.


Assuntos
Proteínas de Algas/metabolismo , Chlamydomonas reinhardtii/genética , Cloroplastos/metabolismo , Mitocôndrias/metabolismo , Proteômica/métodos , Via Secretória/genética , Software , Proteínas de Algas/genética , Chlamydomonas reinhardtii/metabolismo , Biologia Computacional , Redes Neurais de Computação
15.
J Am Chem Soc ; 134(20): 8368-71, 2012 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-22540997

RESUMO

When enzymes are optimized for biotechnological purposes, the goal often is to increase stability or catalytic efficiency. However, many enzymes reversibly convert their substrate and product, and if one is interested in catalysis in only one direction, it may be necessary to prevent the reverse reaction. In other cases, reversibility may be advantageous because only an enzyme that can operate in both directions can turnover at a high rate even under conditions of low thermodynamic driving force. Therefore, understanding the basic mechanisms of reversibility in complex enzymes should help the rational engineering of these proteins. Here, we focus on NiFe hydrogenase, an enzyme that catalyzes H(2) oxidation and production, and we elucidate the mechanism that governs the catalytic bias (the ratio of maximal rates in the two directions). Unexpectedly, we found that this bias is not mainly determined by redox properties of the active site, but rather by steps which occur on sites of the proteins that are remote from the active site. We evidence a novel strategy for tuning the catalytic bias of an oxidoreductase, which consists in modulating the rate of a step that is limiting only in one direction of the reaction, without modifying the properties of the active site.


Assuntos
Desulfovibrio/enzimologia , Hidrogenase/metabolismo , Domínio Catalítico , Desulfovibrio/química , Desulfovibrio/genética , Hidrogenase/química , Hidrogenase/genética , Modelos Moleculares , Mutação , Oxirredução , Termodinâmica
16.
FEBS J ; 278(21): 4035-43, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21848671

RESUMO

Cyanobacterial NAD(P)(+)-reducing reversible hydrogenases comprise five subunits. Four of them (HoxF, HoxU, HoxY, and HoxH) are also found in the well-described related enzyme from Ralstonia eutropha. The fifth one (HoxE) is not encoded in the R. eutropha genome, but shares homology with the N-terminal part of R. eutropha HoxF. However, in cyanobacteria, HoxE contains a 2Fe-2S cluster-binding motif that is not found in the related R. eutropha sequence. In order to obtain some insights into the role of HoxE in cyanobacteria, we deleted this subunit in Synechocystis PCC6803. Three types of interaction of the cyanobacterial hydrogenase with pyridine nucleotides were tested: (a) reductive activation of the NiFe site, for which NADPH was found to be more efficient than NADH; (b) H(2) production, for which NADH appeared to be a more efficient electron donor than NADPH; and (c) H(2) oxidation, for which NAD(+) was a much better electron acceptor than NADP(+). Upon hoxE deletion, the Synechocystis hydrogenase active site remained functional with artificial electron donors or acceptors, but the enzyme became unable to catalyze H(2) production or uptake with NADH/NAD(+). However, activation of the electron transfer-independent H/D exchange reaction by NADPH was still observed in the absence of HoxE, whereas activation of this reaction by NADH was lost. These data suggest different mechanisms for diaphorase-mediated electron donation and catalytic site activation in cyanobacterial hydrogenase.


Assuntos
Oxirredutases/metabolismo , Synechocystis/enzimologia , Domínio Catalítico , Sistema Livre de Células , Proteínas Ferro-Enxofre/metabolismo , Oxirredutases/química
17.
Plant Cell ; 23(7): 2619-30, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21764992

RESUMO

Hydrogen photoproduction by eukaryotic microalgae results from a connection between the photosynthetic electron transport chain and a plastidial hydrogenase. Algal H2 production is a transitory phenomenon under most natural conditions, often viewed as a safety valve protecting the photosynthetic electron transport chain from overreduction. From the colony screening of an insertion mutant library of the unicellular green alga Chlamydomonas reinhardtii based on the analysis of dark-light chlorophyll fluorescence transients, we isolated a mutant impaired in cyclic electron flow around photosystem I (CEF) due to a defect in the Proton Gradient Regulation Like1 (PGRL1) protein. Under aerobiosis, nonphotochemical quenching of fluorescence (NPQ) is strongly decreased in pgrl1. Under anaerobiosis, H2 photoproduction is strongly enhanced in the pgrl1 mutant, both during short-term and long-term measurements (in conditions of sulfur deprivation). Based on the light dependence of NPQ and hydrogen production, as well as on the enhanced hydrogen production observed in the wild-type strain in the presence of the uncoupling agent carbonyl cyanide p-trifluoromethoxyphenylhydrazone, we conclude that the proton gradient generated by CEF provokes a strong inhibition of electron supply to the hydrogenase in the wild-type strain, which is released in the pgrl1 mutant. Regulation of the trans-thylakoidal proton gradient by monitoring pgrl1 expression opens new perspectives toward reprogramming the cellular metabolism of microalgae for enhanced H2 production.


Assuntos
Chlamydomonas reinhardtii/metabolismo , Elétrons , Hidrogênio/metabolismo , Fotossíntese/fisiologia , Proteínas de Plantas/metabolismo , Prótons , Aerobiose , Anaerobiose , Carbonil Cianeto p-Trifluormetoxifenil Hidrazona/farmacologia , Chlamydomonas reinhardtii/citologia , Chlamydomonas reinhardtii/genética , Transporte de Elétrons/efeitos dos fármacos , Transporte de Elétrons/fisiologia , Teste de Complementação Genética , Hidrogenase/metabolismo , Luz , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Oxirredução , Oxigênio/metabolismo , Fotossíntese/efeitos dos fármacos , Complexo de Proteína do Fotossistema I/efeitos dos fármacos , Complexo de Proteína do Fotossistema I/genética , Complexo de Proteína do Fotossistema I/metabolismo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Ionóforos de Próton/farmacologia , Enxofre/metabolismo
18.
J Biol Chem ; 286(27): 24007-14, 2011 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-21602273

RESUMO

Flavodiiron (Flv) proteins are involved in detoxification of O(2) and NO in anaerobic bacteria and archaea. Cyanobacterial Flv proteins, on the contrary, function in oxygenic environment and possess an extra NAD(P)H:flavin oxidoreductase module. Synechocystis sp. PCC 6803 has four genes (sll1521, sll0219, sll0550, and sll0217) encoding Flv proteins (Flv1, Flv2, Flv3, and Flv4). Previous in vitro studies with recombinant Flv3 protein from Synechocystis provided evidence that it functions as a NAD(P)H:oxygen oxidoreductase, and subsequent in vivo studies with Synechocystis confirmed the role of Flv1 and Flv3 proteins in the Mehler reaction (photoreduction of O(2) to H(2)O). Interestingly, homologous proteins to Flv1 and Flv3 can be found also in green algae, mosses, and Selaginella. Here, we addressed the function of Flv1 and Flv3 in Synechocystis using the Δflv1, Δflv3, and Δflv1/Δflv3 mutants and applying inorganic carbon (C(i))-deprivation conditions. We propose that only the Flv1/Flv3 heterodimer form is functional in the Mehler reaction in vivo. (18)O(2) labeling was used to discriminate between O(2) evolution in photosynthetic water splitting and O(2) consumption. In wild type, ∼20% of electrons originated from water was targeted to O(2) under air level CO(2) conditions but increased up to 60% in severe limitation of C(i). Gas exchange experiments with Δflv1, Δflv3, and Δflv1/Δflv3 mutants demonstrated that a considerable amount of electrons in these mutants is directed to photorespiration under C(i) deprivation. This assumption is in line with increased transcript abundance of photorespiratory genes and accumulation of photorespiratory intermediates in the WT and to a higher extent in mutant cells under C(i) deprivation.


Assuntos
Proteínas de Bactérias/metabolismo , Flavoproteínas/metabolismo , Peróxido de Hidrogênio/metabolismo , NADPH Oxidases/metabolismo , Oxigênio/metabolismo , Synechocystis/enzimologia , Proteínas de Bactérias/genética , Flavoproteínas/genética , NADPH Oxidases/genética , Synechocystis/genética
19.
Faraday Discuss ; 148: 385-407; discussion 421-41, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21322495

RESUMO

We investigated di-hydrogen transport between the solvent and the active site of FeFe hydrogenases. Substrate channels supposedly exist and serve various functions in certain redox enzymes which use or produce O2, H2, NO, CO, or N2, but the preferred paths have not always been unambiguously identified, and whether a continuous, permanent channel is an absolute requirement for transporting diatomic molecules is unknown. Here, we review the literature on gas channels in proteins and enzymes and we report on the use of site-directed mutagenesis and various kinetic methods, which proved useful for characterizing substrate access to the active site of NiFe hydrogenase to test the putative "static" H2 channel of FeFe hydrogenases. We designed 8 mutations in attempts to interfere with intramolecular diffusion by remodeling this putative route in Clostridium acetobutylicum FeFe hydrogenase, and we observed that none of them has a strong effect on any of the enzyme's kinetic properties. We suggest that H2 may diffuse either via transient cavities, or along a conserved water-filled channel. Nitrogenase sets a precedent for the involvement of a hydrophilic channel to conduct hydrophobic molecules.


Assuntos
Hidrogenase/química , Proteínas Ferro-Enxofre/química , Monóxido de Carbono/farmacologia , Hidrogênio/química , Hidrogenase/fisiologia , Proteínas Ferro-Enxofre/fisiologia , Cinética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Oxigênio/farmacologia
20.
J Am Chem Soc ; 133(4): 986-97, 2011 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-21175174

RESUMO

Hydrogenases are efficient biological catalysts of H(2) oxidation and production. Most of them are inhibited by O(2), and a prerequisite for their use in biotechnological applications under air is to improve their oxygen tolerance. We have previously shown that exchanging the residue at position 74 in the large subunit of the oxygen-sensitive [NiFe] hydrogenase from Desulfovibrio fructosovorans could impact the reaction of the enzyme with O(2) (Dementin, S.; J. Am. Chem. Soc. 2009, 131, 10156-10164; Liebgott, P. P.; Nat. Chem. Biol. 2010, 6, 63-70). This residue, a valine in the wild-type enzyme, located at the bottleneck of the gas channel near the active site, has here been exchanged with a cysteine. A thorough characterization using a combination of kinetic, spectroscopic (EPR, FTIR), and electrochemical studies demonstrates that the V74C mutant has features of the naturally occurring oxygen-tolerant membrane-bound hydrogenases (MBH). The mutant is functional during several minutes under O(2), has impaired H(2)-production activity, and has a weaker affinity for CO than the WT. Upon exposure to O(2), it is converted into the more easily reactivatable inactive form, Ni-B, and this inactive state reactivates about 20 times faster than in the WT enzyme. Control experiments carried out with the V74S and V74N mutants indicate that protonation of the position 74 residue is not the reason the mutants reactivate faster than the WT enzyme. The electrochemical behavior of the V74C mutant toward O(2) is intermediate between that of the WT enzyme from D. fructosovorans and the oxygen-tolerant MBH from Aquifex aeolicus.


Assuntos
Domínio Catalítico , Cisteína , Hidrogenase/química , Hidrogenase/metabolismo , Mutação , Oxigênio/farmacologia , Valina , Aerobiose , Anaerobiose , Monóxido de Carbono/farmacologia , Membrana Celular/metabolismo , Desulfovibrio/enzimologia , Medição da Troca de Deutério , Eletroquímica , Ativação Enzimática/efeitos dos fármacos , Bactérias Gram-Negativas/enzimologia , Hidrogênio/metabolismo , Hidrogenase/antagonistas & inibidores , Hidrogenase/genética , Cinética , Modelos Moleculares , Oxirredução , Análise Espectral , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA