Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Ann Intensive Care ; 14(1): 1, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38180544

RESUMO

BACKGROUND: Various Positive End-Expiratory Pressure (PEEP) titration strategies have been proposed to optimize ventilation in patients with acute respiratory distress syndrome (ARDS). We aimed to compare PEEP titration strategies based on electrical impedance tomography (EIT) to methods derived from respiratory system mechanics with or without esophageal pressure measurements, in terms of PEEP levels and association with recruitability. METHODS: Nineteen patients with ARDS were enrolled. Recruitability was assessed by the estimated Recruitment-to-Inflation ratio (R/Iest) between PEEP 15 and 5 cmH2O. Then, a decremental PEEP trial from PEEP 20 to 5 cmH2O was performed. PEEP levels determined by the following strategies were studied: (1) plateau pressure 28-30 cmH2O (Express), (2) minimal positive expiratory transpulmonary pressure (Positive PLe), (3) center of ventilation closest to 0.5 (CoV) and (4) intersection of the EIT-based overdistension and lung collapse curves (Crossing Point). In addition, the PEEP levels determined by the Crossing Point strategy were assessed using different PEEP ranges during the decremental PEEP trial. RESULTS: Express and CoV strategies led to higher PEEP levels than the Positive PLe and Crossing Point ones (17 [14-17], 20 [17-20], 8 [5-11], 10 [8-11] respectively, p < 0.001). For each strategy, there was no significant association between the optimal PEEP level and R/Iest (Crossing Point: r2 = 0.073, p = 0.263; CoV: r2 < 0.001, p = 0.941; Express: r2 < 0.001, p = 0.920; Positive PLe: r2 = 0.037, p = 0.461). The PEEP level obtained with the Crossing Point strategy was impacted by the PEEP range used during the decremental PEEP trial. CONCLUSIONS: CoV and Express strategies led to higher PEEP levels than the Crossing Point and Positive PLe strategies. Optimal PEEP levels proposed by these four methods were not associated with recruitability. Recruitability should be specifically assessed in ARDS patients to optimize PEEP titration.

2.
Crit Care ; 27(1): 343, 2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37667379

RESUMO

BACKGROUND: Respiratory mechanics is a key element to monitor mechanically ventilated patients and guide ventilator settings. Besides the usual basic assessments, some more complex explorations may allow to better characterize patients' respiratory mechanics and individualize ventilation strategies. These advanced respiratory mechanics assessments including esophageal pressure measurements and complete airway closure detection may be particularly relevant in critically ill obese patients. This study aimed to comprehensively assess respiratory mechanics in obese and non-obese ICU patients with or without ARDS and evaluate the contribution of advanced respiratory mechanics assessments compared to basic assessments in these patients. METHODS: All intubated patients admitted in two ICUs for any cause were prospectively included. Gas exchange and respiratory mechanics including esophageal pressure and end-expiratory lung volume (EELV) measurements and low-flow insufflation to detect complete airway closure were assessed in standardized conditions (tidal volume of 6 mL kg-1 predicted body weight (PBW), positive end-expiratory pressure (PEEP) of 5 cmH2O) within 24 h after intubation. RESULTS: Among the 149 analyzed patients, 52 (34.9%) were obese and 90 (60.4%) had ARDS (65.4% and 57.8% of obese and non-obese patients, respectively, p = 0.385). A complete airway closure was found in 23.5% of the patients. It was more frequent in obese than in non-obese patients (40.4% vs 14.4%, p < 0.001) and in ARDS than in non-ARDS patients (30% vs. 13.6%, p = 0.029). Respiratory system and lung compliances and EELV/PBW were similarly decreased in obese patients without ARDS and obese or non-obese patients with ARDS. Chest wall compliance was not impacted by obesity or ARDS, but end-expiratory esophageal pressure was higher in obese than in non-obese patients. Chest wall contribution to respiratory system compliance differed widely between patients but was not predictable by their general characteristics. CONCLUSIONS: Most respiratory mechanics features are similar in obese non-ARDS and non-obese ARDS patients, but end-expiratory esophageal pressure is higher in obese patients. A complete airway closure can be found in around 25% of critically ill patients ventilated with a PEEP of 5 cmH2O. Advanced explorations may allow to better characterize individual respiratory mechanics and adjust ventilation strategies in some patients. Trial registration NCT03420417 ClinicalTrials.gov (February 5, 2018).


Assuntos
Estado Terminal , Síndrome do Desconforto Respiratório , Humanos , Peso Corporal , Obesidade/complicações , Respiração Artificial , Síndrome do Desconforto Respiratório/complicações , Síndrome do Desconforto Respiratório/terapia , Mecânica Respiratória
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA