Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Genesis ; 62(1): e23580, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37974491

RESUMO

Bop1 can promote cell proliferation and is a component of the Pes1-Bop1-WDR12 (PeBoW) complex that regulates ribosomal RNA processing and biogenesis. In embryos, however, bop1 mRNA is highly enriched in the neural plate, cranial neural crest and placodes, and potentially may interact with Six1, which also is expressed in these tissues. Recent work demonstrated that during development, Bop1 is required for establishing the size of the tadpole brain, retina and cranial cartilages, as well as controlling neural tissue gene expression levels. Herein, we extend this work by assessing the effects of Bop1 knockdown at neural plate and larval stages. Loss of Bop1 expanded neural plate gene expression domains (sox2, sox11, irx1) and reduced neural crest (foxd3, sox9), placode (six1, sox11, irx1, sox9) and epidermal (dlx5) expression domains. At larval stages, Bop1 knockdown reduced the expression of several otic vesicle genes (six1, pax2, irx1, sox9, dlx5, otx2, tbx1) and branchial arch genes that are required for chondrogenesis (sox9, tbx1, dlx5). The latter was not the result of impaired neural crest migration. Together these observations indicate that Bop1 is a multifunctional protein that in addition to its well-known role in ribosomal biogenesis functions during early development to establish the craniofacial precursor domains.


Assuntos
Crista Neural , Fatores de Transcrição , Crista Neural/metabolismo , Fatores de Transcrição/metabolismo , Cabeça , Crânio/metabolismo , Ribossomos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento
2.
Front Cell Dev Biol ; 11: 1274788, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37854072

RESUMO

Introduction: The Six1 transcription factor plays important roles in the development of cranial sensory organs, and point mutations underlie craniofacial birth defects. Because Six1's transcriptional activity can be modulated by interacting proteins, we previously screened for candidate interactors and identified zinc-finger MYM-containing protein 4 (Zmym4) by its inclusion of a few domains with a bona fide cofactor, Sine oculis binding protein (Sobp). Although Zmym4 has been implicated in regulating early brain development and certain cancers, its role in craniofacial development has not previously been described. Methods: We used co-immunoprecipitation and luciferase-reporter assays in cultured cells to test interactions between Zmym4 and Six1. We used knock-down and overexpression of Zmym4 in embryos to test for its effects on early ectodermal gene expression, neural crest migration and craniofacial cartilage formation. Results: We found no evidence that Zmym4 physically or transcriptionally interacts with Six1 in cultured cells. Nonetheless, knockdown of endogenous Zmym4 in embryos resulted in altered early cranial gene expression, including those expressed in the neural border, neural plate, neural crest and preplacodal ectoderm. Experimentally increasing Zmym4 levels had minor effects on neural border or neural plate genes, but altered the expression of neural crest and preplacodal genes. At larval stages, genes expressed in the otic vesicle and branchial arches showed reduced expression in Zmym4 morphants. Although we did not detect defects in neural crest migration into the branchial arches, loss of Zmym4 resulted in aberrant morphology of several craniofacial cartilages. Discussion: Although Zmym4 does not appear to function as a Six1 transcriptional cofactor, it plays an important role in regulating the expression of embryonic cranial genes in tissues critical for normal craniofacial development.

3.
Front Cell Dev Biol ; 11: 1271178, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37766964

RESUMO

Introduction: Cranial neural crest (CNC) cells are induced at the border of the neural plate by a combination of FGF, Wnt, and BMP4 signaling. CNC then migrate ventrally and invade ventral structures where they contribute to craniofacial development. Methods: We used loss and gain of function experiments to determine phenotypes associated with the perturbation of Adam11 expression in Xenopus Laevis. Mass spectrometry to identify partners of Adam11 and changes in protein expression in CNC lacking Adam11. We used mouse B16 melanoma to test the function of Adam11 in cancer cells, and published database analysis to study the expression of ADAM11 in human tumors. Results: Here we show that a non-proteolytic ADAM, Adam11, originally identified as a putative tumor suppressor binds to proteins of the Wnt and BMP4 signaling pathway. Mechanistic studies concerning these non-proteolytic ADAM lack almost entirely. We show that Adam11 positively regulates BMP4 signaling while negatively regulating ß-catenin activity. In vivo, we show that Adam11 influences the timing of neural tube closure and the proliferation and migration of CNC. Using both human tumor data and mouse B16 melanoma cells, we further show that ADAM11 levels similarly correlate with Wnt or BMP4 activation levels. Discussion: We propose that ADAM11 preserves naïve cells by maintaining low Sox3 and Snail/Slug levels through stimulation of BMP4 and repression of Wnt signaling, while loss of ADAM11 results in increased Wnt signaling, increased proliferation and early epithelium to mesenchyme transition.

4.
bioRxiv ; 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37398217

RESUMO

Cranial neural crest (CNC) cells are induced at the border of the neural plate by a combination of FGF, Wnt, and BMP4 signaling. CNC then migrate ventrally and invade ventral structures where they contribute to craniofacial development. Here we show that a non-proteolytic ADAM, Adam11, originally identified as a putative tumor suppressor binds to proteins of the Wnt and BMP4 signaling pathway. Mechanistic studies concerning these non-proteolytic ADAM lack almost entirely. We show that Adam11 positively regulates BMP4 signaling while negatively regulating ß-catenin activity. By modulating these pathways, Adam11 controls the timing of neural tube closure and the proliferation and migration of CNC. Using both human tumor data and mouse B16 melanoma cells, we further show that ADAM11 levels similarly correlate with Wnt or BMP4 activation levels. We propose that ADAM11 preserve naïve cells by maintaining low Sox3 and Snail/Slug levels through stimulation of BMP4 and repression of Wnt signaling, while loss of ADAM11 results in increased Wnt signaling, increased proliferation and early epithelium to mesenchyme transition.

5.
Dev Biol ; 489: 62-75, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35697116

RESUMO

Mcrs1 is a multifunctional protein that is critical for many cellular processes in a wide range of cell types. Previously, we showed that Mcrs1 binds to the Six1 transcription factor and reduces the ability of the Six1-Eya1 complex to upregulate transcription, and that Mcrs1 loss-of-function leads to the expansion of several neural plate genes, reduction of neural border and pre-placodal ectoderm (PPR) genes, and pleiotropic effects on various neural crest (NC) genes. Because the affected embryonic structures give rise to several of the cranial tissues affected in Branchio-otic/Branchio-oto-renal (BOR) syndrome, herein we tested whether these gene expression changes subsequently alter the development of the proximate precursors of BOR affected structures - the otic vesicles (OV) and branchial arches (BA). We found that Mcrs1 is required for the expression of several OV genes involved in inner ear formation, patterning and otic capsule cartilage formation. Mcrs1 knockdown also reduced the expression domains of many genes expressed in the larval BA, derived from either NC or PPR, except for emx2, which was expanded. Reduced Mcrs1 also diminished the length of the expression domain of tbx1 in BA1 and BA2 and interfered with cranial NC migration from the dorsal neural tube; this subsequently resulted in defects in the morphology of lower jaw cartilages derived from BA1 and BA2, including the infrarostral, Meckel's, and ceratohyal as well as the otic capsule. These results demonstrate that Mcrs1 plays an important role in processes that lead to the formation of craniofacial cartilages and its loss results in phenotypes consistent with reduced Six1 activity associated with BOR.


Assuntos
Região Branquial , Síndrome Brânquio-Otorrenal , Região Branquial/metabolismo , Síndrome Brânquio-Otorrenal/genética , Síndrome Brânquio-Otorrenal/metabolismo , Cartilagem/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/metabolismo , Crista Neural , Placa Neural/metabolismo , Proteínas de Ligação a RNA/metabolismo
6.
Dev Biol ; 470: 74-83, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33159936

RESUMO

We previously identified the protein Lbh as necessary for cranial neural crest (CNC) cell migration in Xenopus through the use of morpholinos. However, Lbh is a maternally deposited protein and morpholinos achieve knockdowns through prevention of translation. In order to investigate the role of Lbh in earlier embryonic events, we employed the new technique "Trim-Away" to degrade this maternally deposited protein. Trim-Away utilizes the E3 ubiquitin ligase trim21 to degrade proteins targeted with an antibody and was developed in mammalian systems. Our results show that Xenopus is amenable to the Trim-Away technique. We also show that early knockdown of Lbh in Xenopus results in defects in gastrulation that present with a decrease in fibronectin matrix assembly, an increased in mesodermal cell migration and decrease in endodermal cell cohesion. We further show that the technique is also effective on a second abundant maternal protein PACSIN2. We discuss potential advantages and limit of the technique in Xenopus embryos as well as the mechanism of gastrulation inhibition.


Assuntos
Gastrulação , Proteínas de Xenopus/fisiologia , Xenopus laevis/embriologia , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Anticorpos Monoclonais/imunologia , Movimento Celular , Ectoderma/citologia , Ectoderma/embriologia , Ectoderma/patologia , Indução Embrionária , Endoderma/citologia , Endoderma/embriologia , Endoderma/fisiologia , Fibronectinas/metabolismo , Mesoderma/citologia , Mesoderma/embriologia , Mesoderma/fisiologia , Morfolinos , Crista Neural/citologia , Crista Neural/embriologia , Proteólise , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Proteínas de Xenopus/genética , Proteínas de Xenopus/imunologia , Proteínas de Xenopus/metabolismo
7.
Mol Biol Cell ; 31(3): 167-183, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31851597

RESUMO

Protein glycosylation plays essential roles in protein structure, stability, and activity such as cell adhesion. The cadherin superfamily of adhesion molecules carry O-linked mannose glycans at conserved sites and it was recently demonstrated that the transmembrane and tetratricopeptide repeat-containing proteins 1-4 (TMTC1-4) gene products contribute to the addition of these O-linked mannoses. Here, biochemical, cell biological, and organismal analysis was used to determine that TMTC3 supports the O-mannosylation of E-cadherin, cellular adhesion, and embryonic gastrulation. Using genetically engineered cells lacking all four TMTC genes, overexpression of TMTC3 rescued O-linked glycosylation of E-cadherin and cell adherence. The knockdown of the Tmtcs in Xenopus laevis embryos caused a delay in gastrulation that was rescued by the addition of human TMTC3. Mutations in TMTC3 have been linked to neuronal cell migration diseases including Cobblestone lissencephaly. Analysis of TMTC3 mutations associated with Cobblestone lissencephaly found that three of the variants exhibit reduced stability and missence mutations were unable to complement TMTC3 rescue of gastrulation in Xenopus embryo development. Our study demonstrates that TMTC3 regulates O-linked glycosylation and cadherin-mediated adherence, providing insight into its effect on cellular adherence and migration, as well the basis of TMTC3-associated Cobblestone lissencephaly.


Assuntos
Caderinas/metabolismo , Proteínas de Transporte/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas de Membrana/metabolismo , Animais , Células COS , Proteínas de Transporte/genética , Adesão Celular/fisiologia , Moléculas de Adesão Celular/metabolismo , Chlorocebus aethiops , Gastrulação/fisiologia , Glicosilação , Células HEK293 , Humanos , Manose/metabolismo , Proteínas de Membrana/genética , Mutação , Neurônios/citologia , Neurônios/metabolismo , Xenopus laevis
8.
Cold Spring Harb Protoc ; 2019(2)2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29321278

RESUMO

In 1924, Hans Spemann and Hilde Mangold (née Pröscholdt) published their famous work describing the transplantation of dorsal blastopore lip of one newt gastrula embryo onto the ventral side of a host embryo at the same stage. They performed these grafts using two newt species with different pigmentation (Triturus taeniatus and Triturus cristatus) to follow the fate of the grafted tissue. These experiments resulted in the development of conjoined twins attached through their belly. Because of the difference in embryo pigmentation between the two Triturus species, they determined that the bulk of the secondary embryo arose from the host embryo while the grafted tissue per se gave increase to the notochord and a few somitic cells. This meant that the dorsal blastopore lip was able to organize an almost complete embryo out of ventral tissue. The dorsal blastopore lip is now called the Spemann-Mangold organizer. Here, we describe a simple yet efficient protocol to perform these grafts using the anuran Xenopus laevis.


Assuntos
Transplante de Tecido Fetal/métodos , Gástrula/crescimento & desenvolvimento , Organizadores Embrionários , Transplante Homólogo/métodos , Xenopus/embriologia , Animais
9.
Cold Spring Harb Protoc ; 2019(2)2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29321288

RESUMO

Einsteck procedure refers to a method whereby the experimenter inserts material into the blastocoel cavity of an early amphibian embryo. This procedure is simpler to perform than other types of grafts, such as Spemann-Mangold, and with practice yields a sizable amount of data suitable for statistical analysis. This protocol for Einsteck transplantation in Xenopus describes the insertion of the gastrula-stage blastopore lip into the blastocoel cavity of a host embryo.


Assuntos
Transplante de Tecido Fetal/métodos , Gástrula/crescimento & desenvolvimento , Transplante Homólogo/métodos , Xenopus/embriologia , Animais
10.
Cold Spring Harb Protoc ; 2018(3)2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29321283

RESUMO

The cranial neural crest (CNC) explant assay was originally designed to assess the basic requirements for CNC migration in vitro. This protocol describes the key parameters of CNC explants in Xenopus laevis, with a focus on how to extirpate CNC cells and assay their migration in vitro. The protocol can be adapted according to the needs of the experimenter, some examples of which are discussed here.


Assuntos
Crista Neural/fisiologia , Crânio/fisiologia , Técnicas de Cultura de Tecidos/métodos , Xenopus laevis/embriologia , Animais , Bovinos , Embrião não Mamífero/metabolismo , Imagem com Lapso de Tempo
11.
Cold Spring Harb Protoc ; 2018(3)2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29321285

RESUMO

The transplantation of cranial neural crest (CNC) expressing green fluorescent protein (GFP) in Xenopus laevis has allowed researchers not only to assess CNC migration in vivo but also to address many other experimental questions. Coupled with loss- or gain-of-function experiments, this technique can be used to characterize the function of specific genes during CNC migration and differentiation. Although targeted injection can also be used to assess gene function during CNC migration, CNC transplantation allows one to answer specific questions, such as whether a gene's function is tissue autonomous, cell autonomous, or exerted in the tissues surrounding the CNC. Here we describe a protocol for performing simple CNC grafts.


Assuntos
Crista Neural/fisiologia , Crânio/fisiologia , Técnicas de Cultura de Tecidos/métodos , Xenopus laevis/embriologia , Animais , Embrião não Mamífero/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Imagem com Lapso de Tempo
12.
Elife ; 62017 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-28829038

RESUMO

Adam13/33 is a cell surface metalloprotease critical for cranial neural crest (CNC) cell migration. It can cleave multiple substrates including itself, fibronectin, ephrinB, cadherin-11, pcdh8 and pcdh8l (this work). Cleavage of cadherin-11 produces an extracellular fragment that promotes CNC migration. In addition, the adam13 cytoplasmic domain is cleaved by gamma secretase, translocates into the nucleus and regulates multiple genes. Here, we show that adam13 interacts with the arid3a/dril1/Bright transcription factor. This interaction promotes a proteolytic cleavage of arid3a and its translocation to the nucleus where it regulates another transcription factor: tfap2α. Tfap2α in turn activates multiple genes including the protocadherin pcdh8l (PCNS). The proteolytic activity of adam13 is critical for the release of arid3a from the plasma membrane while the cytoplasmic domain appears critical for the cleavage of arid3a. In addition to this transcriptional control of pcdh8l, adam13 cleaves pcdh8l generating an extracellular fragment that also regulates cell migration.


Assuntos
Proteínas ADAM/metabolismo , Caderinas/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica , Proteínas de Membrana/metabolismo , Crista Neural/fisiologia , Fator de Transcrição AP-2/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Xenopus/metabolismo , Animais , Protocaderinas , Transcrição Gênica , Xenopus laevis
13.
Mech Dev ; 148: 79-88, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28467887

RESUMO

Collective cell migration is a process whereby cells move while keeping contact with other cells. The Xenopus Cranial Neural Crest (CNC) is a population of cells that emerge during early embryogenesis and undergo extensive migration from the dorsal to ventral part of the embryo's head. These cells migrate collectively and require cadherin mediated cell-cell contact. In this review, we will describe the key features of Xenopus CNC migration including the key molecules driving their migration. We will also review the role of the various cadherins during Xenopus CNC emergence and migration. Lastly, we will discuss the recent and seemingly controversial findings showing that E-cadherin presence is essential for CNC migration.


Assuntos
Caderinas/genética , Movimento Celular/genética , Xenopus/genética , Animais , Adesão Celular/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Crista Neural/crescimento & desenvolvimento , Crânio/crescimento & desenvolvimento , Xenopus/crescimento & desenvolvimento
14.
J Cell Sci ; 128(6): 1139-49, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25616895

RESUMO

Cranial neural crest (CNC) cells are a transient population of stem cells that originate at the border of the neural plate and the epidermis, and migrate ventrally to contribute to most of the facial structures including bones, cartilage, muscles and ganglia. ADAM13 is a cell surface metalloprotease that is essential for CNC cell migration. Here, we show in Xenopus laevis embryos that the Wnt receptor Fz4 binds to the cysteine-rich domain of ADAM13 and negatively regulates its proteolytic activity in vivo. Gain of Fz4 function inhibits CNC cell migration and can be rescued by gain of ADAM13 function. Loss of Fz4 function also inhibits CNC cell migration and induces a reduction of mature ADAM13, together with an increase in the ADAM13 cytoplasmic fragment that is known to translocate into the nucleus to regulate gene expression. We propose that Fz4 associates with ADAM13 during its transport to the plasma membrane to regulate its proteolytic activity.


Assuntos
Proteínas ADAM/metabolismo , Embrião não Mamífero/metabolismo , Receptores Frizzled/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Membrana/metabolismo , Crista Neural/metabolismo , Proteínas Wnt/metabolismo , Proteínas de Xenopus/metabolismo , Proteínas ADAM/genética , Animais , Células COS , Membrana Celular/metabolismo , Movimento Celular , Núcleo Celular/metabolismo , Proliferação de Células , Células Cultivadas , Chlorocebus aethiops , Embrião não Mamífero/citologia , Imunofluorescência , Receptores Frizzled/genética , Células HEK293 , Humanos , Imunoprecipitação , Hibridização In Situ , Proteínas de Membrana/genética , Crista Neural/citologia , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas Wnt/genética , Proteínas de Xenopus/genética , Xenopus laevis/genética , Xenopus laevis/crescimento & desenvolvimento , Xenopus laevis/metabolismo
15.
Mol Biol Cell ; 25(25): 4072-82, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25298404

RESUMO

ADAMs are cell surface metalloproteases that control multiple biological processes by cleaving signaling and adhesion molecules. ADAM13 controls cranial neural crest (CNC) cell migration both by cleaving cadherin-11 to release a promigratory extracellular fragment and by controlling expression of multiple genes via its cytoplasmic domain. The latter activity is regulated by γ-secretase cleavage and the translocation of the cytoplasmic domain into the nucleus. One of the genes regulated by ADAM13, the protease calpain8, is essential for CNC migration. Although the nuclear function of ADAM13 is evolutionarily conserved, it is unclear whether the transcriptional regulation is also performed by other ADAMs and how this process may be regulated. We show that ADAM13 function to promote CNC migration is regulated by two phosphorylation events involving GSK3 and Polo-like kinase (Plk). We further show that inhibition of either kinase blocks CNC migration and that the respective phosphomimetic forms of ADAM13 can rescue these inhibitions. However, these phosphorylations are not required for ADAM13 proteolysis of its substrates, γ-secretase cleavage, or nuclear translocation of its cytoplasmic domain. Of significance, migration of the CNC can be restored in the absence of Plk phosphorylation by expression of calpain-8a, pointing to impaired nuclear activity of ADAM13.


Assuntos
Proteínas ADAM/metabolismo , Proteínas de Ciclo Celular/fisiologia , Quinase 3 da Glicogênio Sintase/fisiologia , Proteínas de Membrana/metabolismo , Crista Neural/fisiologia , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas Proto-Oncogênicas/fisiologia , Proteínas de Xenopus/metabolismo , Proteínas de Xenopus/fisiologia , Animais , Movimento Celular , Núcleo Celular/enzimologia , Embrião não Mamífero/citologia , Embrião não Mamífero/enzimologia , Células HEK293 , Humanos , Fosforilação , Processamento de Proteína Pós-Traducional , Proteólise , Xenopus laevis/embriologia , Xenopus laevis/metabolismo , Quinase 1 Polo-Like
16.
Mol Biol Evol ; 31(12): 3113-24, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25234704

RESUMO

Since the time of Darwin, biologists have sought to understand the origins and maintenance of life's diversity of form. However, the nature of the exact DNA mutations and molecular mechanisms that result in morphological differences between species remains unclear. Here, we characterize a nonsynonymous mutation in a transcriptional coactivator, limb bud and heart homolog (lbh), which is associated with adaptive variation in the lower jaw of cichlid fishes. Using both zebrafish and Xenopus, we demonstrate that lbh mediates migration of cranial neural crest cells, the cellular source of the craniofacial skeleton. A single amino acid change that is alternatively fixed in cichlids with differing facial morphologies results in discrete shifts in migration patterns of this multipotent cell type that are consistent with both embryological and adult craniofacial phenotypes. Among animals, this polymorphism in lbh represents a rare example of a coding change that is associated with continuous morphological variation. This work offers novel insights into the development and evolution of the craniofacial skeleton, underscores the evolutionary potential of neural crest cells, and extends our understanding of the genetic nature of mutations that underlie divergence in complex phenotypes.


Assuntos
Ciclídeos/genética , Proteínas de Peixes/genética , Crista Neural/citologia , Transativadores/genética , Adaptação Biológica , Animais , Movimento Celular , Ciclídeos/anatomia & histologia , Evolução Molecular , Feminino , Loci Gênicos , Arcada Osseodentária/anatomia & histologia , Dados de Sequência Molecular , Mutação de Sentido Incorreto , Fenótipo , Filogenia , Xenopus laevis , Peixe-Zebra
17.
Nat Commun ; 5: 3516, 2014 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-24662724

RESUMO

The Eph/ephrin signalling pathways have a critical function in cell adhesion and repulsion, and thus play key roles in various morphogenetic events during development. Here we show that a decrease in ephrinB2 protein causes neural tube closure defects during Xenopus laevis embryogenesis. Such a decrease in ephrinB2 protein levels is observed on the loss of flotillin-1 scaffold protein, a newly identified ephrinB2-binding partner. This dramatic decline in ephrinB2 protein levels on the absence of flotillin-1 expression is specific, and is partly the result of an increased susceptibility to cleavage by the metalloprotease ADAM10. These findings indicate that flotillin-1 regulates ephrinB2 protein levels through ADAM10, and is required for appropriate neural tube morphogenesis in the Xenopus embryo.


Assuntos
Proteínas ADAM/metabolismo , Efrina-B2/metabolismo , Proteínas de Membrana/metabolismo , Morfogênese/fisiologia , Defeitos do Tubo Neural/embriologia , Transdução de Sinais/fisiologia , Xenopus laevis/embriologia , Animais , Western Blotting , Embrião não Mamífero/fisiologia , Imunoprecipitação , Microscopia de Fluorescência , Defeitos do Tubo Neural/metabolismo , Xenopus laevis/metabolismo
18.
PLoS One ; 8(2): e56025, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23405249

RESUMO

The digital laminae is a two layer tissue that attaches the distal phalanx to the inner hoof wall, thus suspending the horse's axial skeleton in the hoof capsule. This tissue fails at the epidermal:dermal junction in laminitic horses, causing crippling disease. Basal epithelial cells line the laminar epidermal:dermal junction, undergo physiological change in laminitic horses, and lose versican gene expression. Versican gene expression is purportedly under control of the canonical Wnt signaling pathway and is a trigger for mesenchymal-to-epithelial transition; thus, its repression in laminar epithelial cells of laminitic horses may be associated with suppression of the canonical Wnt signaling pathway and loss of the epithelial cell phenotype. In support of the former contention, we show, using laminae from healthy horses and horses with carbohydrate overload-induced laminitis, quantitative real-time polymerase chain reaction, Western blotting after sodium dodecylsulfate polyacrylamide gel electrophoresis, and immunofluorescent tissue staining, that positive and negative regulatory components of the canonical Wnt signaling pathway are expressed in laminar basal epithelial cells of healthy horses. Furthermore, expression of positive regulators is suppressed and negative regulators elevated in laminae of laminitic compared to healthy horses. We also show that versican gene expression in the epithelial cells correlates positively with that of ß-catenin and T-cell Factor 4, consistent with regulation by the canonical Wnt signaling pathway. In addition, gene and protein expression of ß-catenin correlates positively with that of integrin ß4 and both are strongly suppressed in laminar basal epithelial cells of laminitic horses, which remain E-cadherin(+)/vimentin(-), excluding mesenchymal transition as contributing to loss of the adherens junction and hemidesmosome components. We propose that suppression of the canonical Wnt signaling pathway, and accompanying reduced expression of ß catenin and integrin ß4 in laminar basal epithelial cells reduces cell:cell and cell:basement membrane attachment, thus, destabilizing the laminar epidermal:dermal junction.


Assuntos
Células Epiteliais/metabolismo , Doenças dos Cavalos/fisiopatologia , Coxeadura Animal/fisiopatologia , Transdução de Sinais , Via de Sinalização Wnt , Animais , Western Blotting , Caderinas/metabolismo , Células Epiteliais/citologia , Imunofluorescência , Cavalos , Inflamação , Integrina alfa6/metabolismo , Integrina beta4/metabolismo , Vimentina/metabolismo , beta Catenina/metabolismo
19.
Dev Biol ; 368(2): 335-44, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-22683825

RESUMO

The cranial neural crest (CNC) is a population of cells that arises from the lateral part of the developing brain, migrates ventrally and coordinates the entire craniofacial development of vertebrates. Many molecules are involved in CNC migration including the transmembrane metalloproteases ADAM13 and 19. We have previously shown that these ADAMs cleave a number of extracellular proteins and modify the transcription of a number of genes, and that both of these activities are important for cell migration. Here we show that the knock down of ADAM13 inhibits CNC migration in vivo but not in vitro, indicating that ADAM13 function is required in the 3-dimentional context of the embryo. We further show that the migration of CNC that do not express ADAM13 and ADAM19 can be rescued in vivo by co-grafting wild type CNC. Furthermore, the migration of CNC lacking ADAM13 can be rescued by mechanically separating the CNC from the surrounding ectoderm and mesoderm. Finally, we show that ADAM13 function is autonomous to CNC tissue, as the migration of morphant CNC can only be rescued by ADAM13 expression in the CNC and not the surrounding tissues. Together our results suggest that ADAM13 changes CNC interaction with the extracellular environment and that this change is necessary for their migration in vivo.


Assuntos
Proteínas ADAM/metabolismo , Movimento Celular , Embrião não Mamífero/metabolismo , Proteínas de Membrana/metabolismo , Crista Neural/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/metabolismo , Proteínas ADAM/genética , Animais , Transplante de Células/métodos , Ectoderma/citologia , Ectoderma/embriologia , Ectoderma/metabolismo , Embrião não Mamífero/citologia , Embrião não Mamífero/embriologia , Técnicas de Silenciamento de Genes , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Proteínas de Membrana/genética , Mesoderma/citologia , Mesoderma/embriologia , Mesoderma/metabolismo , Microscopia de Fluorescência , Crista Neural/citologia , Crista Neural/embriologia , Crânio/citologia , Fatores de Tempo , Imagem com Lapso de Tempo , Proteínas de Xenopus/genética , Xenopus laevis/embriologia , Xenopus laevis/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA