Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
mSystems ; 9(4): e0095123, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38470037

RESUMO

The regulation of Bordetella pertussis virulence is mediated by the two-component system BvgA/S, which activates the transcription of virulence-activated genes (vags). In the avirulent phase, the vags are not expressed, but instead, virulence-repressed genes (vrgs) are expressed, under the control of another two-component system, RisA/K. Here, we combined transcriptomic and chromatin immunoprecipitation sequencing (ChIPseq) data to examine the RisA/K regulon. We performed RNAseq analyses of RisA-deficient and RisA-phosphoablative B. pertussis mutants cultivated in virulent and avirulent conditions. We confirmed that the expression of most vrgs is regulated by phosphorylated RisA. However, the expression of some, including those involved in flagellum biosynthesis and chemotaxis, requires RisA independently of phosphorylation. Many RisA-regulated genes encode proteins with regulatory functions, suggesting multiple RisA regulation cascades. By ChIPseq analyses, we identified 430 RisA-binding sites, 208 within promoter regions, 201 within open reading frames, and 21 in non-coding regions. RisA binding was demonstrated in the promoter regions of most vrgs and, surprisingly, of some vags, as well as for other genes not identified as vags or vrgs. Unexpectedly, many genes, including some vags, like prn, brpL, bipA, and cyaA, contain a BvgA-binding site and a RisA-binding site, which increases the complexity of the RisAK/BvgAS network in B. pertussis virulence regulation.IMPORTANCEThe expression of virulence-activated genes (vags) of Bordetella pertussis, the etiological agent of whooping cough, is under the transcriptional control of the two-component system BvgA/S, which allows the bacterium to switch between virulent and avirulent phases. In addition, the more recently identified two-component system RisA/K is required for the expression of B. pertussis genes, collectively named vrgs, that are repressed during the virulent phase but activated during the avirulent phase. We have characterized the RisA/K regulon by combined transcriptomic and chromatin immunoprecipitation sequencing analyses. We identified more than 400 RisA-binding sites. Many of them are localized in promoter regions, especially vrgs, but some were found within open reading frames and in non-coding regions. Surprisingly, RisA-binding sites were also found in promoter regions of some vags, illustrating the previously underappreciated complexity of virulence regulation in B. pertussis.


Assuntos
Bordetella pertussis , Coqueluche , Humanos , Bordetella pertussis/genética , Regulon/genética , Fatores de Transcrição/genética , Coqueluche/genética , Proteínas de Bactérias/genética , Sequenciamento de Cromatina por Imunoprecipitação , Perfilação da Expressão Gênica
2.
Vaccine ; 40(11): 1555-1562, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-33509692

RESUMO

BPZE1 is a live attenuated vaccine against infection by Bordetella pertussis, the causative agent of whooping cough. It was previously shown that BPZE1 provides heterologous protection in mouse models of disease caused by unrelated pathogens, such as influenza virus and respiratory syncytial virus. Protection was also observed in mouse models of asthma and contact dermatitis. In this study, we demonstrate that BPZE1 also displays protection against an unrelated bacterial pathogen in a mouse model of invasive pneumococcal disease mediated by Streptococcus pneumoniae. While a single administration of BPZE1 provided no protection, two doses of 106 colony-forming units of BPZE1 given in a three-week interval protected against mortality, lung colonization and dissemination in both BALB/c and C57BL/6 mice. Unlike for the previously reported influenza challenge model, protection was short-lived, and waned within days after booster vaccination. Formaldehyde-killed BPZE1 protected only when administered following a live prime, indicating that priming requires live BPZE1 for protection. Protection against mortality was directly linked to substantially decreased bacterial dissemination in the blood and was lost in MyD88 knock-out mice, demonstrating the role of the innate immune system in the mechanism of protection. This is the first report on a heterologous protective effect of the live BPZE1 vaccine candidate against an unrelated bacterial infection.


Assuntos
Infecções Pneumocócicas , Coqueluche , Administração Intranasal , Animais , Bordetella pertussis , Camundongos , Camundongos Endogâmicos C57BL , Vacina contra Coqueluche , Infecções Pneumocócicas/prevenção & controle , Vacinas Atenuadas , Coqueluche/prevenção & controle
3.
Curr Res Microb Sci ; 2: 100072, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34841362

RESUMO

BACKGROUND: The resurgence of whooping cough in many countries highlights the crucial need for a better understanding of the pathogenesis of respiratory infection by Bordetella pertussis. Exposure of baboons to B. pertussis by the intranasal and intra-tracheal routes is a recently described preclinical model that reproduces both B. pertussis infection of humans and whooping cough disease. Here, we tested both intranasal and intranasal+intra-tracheal exposure routes and assessed their impact on disease development and immunity. METHODS: Young baboons were intranasally exposed to the B1917 clinical isolate, representative of circulating strains in Europe, or its green-fluorescent protein expressing derivative. Animals were followed for pertussis symptoms and bacterial colonization and by in vivo probe-based confocal laser endomicroscopy (pCLE) imaging. Sero-conversion and protection against subsequent infection were then evaluated. RESULTS: Seroconversion and bacterial colonization of both the nasopharynx and trachea was observed in baboons exposed to B. pertussis by the intranasal route only, and also in those animals challenged by both the intranasal and intra-tracheal routes together. However, baboons exposed solely by the intranasal route developed only mild clinical symptoms, with no paroxysmal cough. These animals were protected against re-infection by B. pertussis. CONCLUSIONS: Intranasal exposure of baboons to B. pertussis does not induce disease but elicits immune mechanisms that protect them from subsequent exposure to the bacteria. These findings suggest that the intranasal route of inoculation in this non-human primate model could be used in the pre-clinical evaluation of nasal candidate vaccines against pertussis.

4.
Vaccine ; 39(21): 2843-2849, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-33896662

RESUMO

Pertussis, mainly caused by Bordetella pertussis, is a severe respiratory disease that can be fatal, especially in young infants. Vaccines, massively implemented since the middle of the last century, have substantially reduced the pertussis incidence, but have not been able to fully control the disease. One of the shortcomings of current pertussis vaccines is their inability to prevent infection by and transmission of B. pertussis, in contrast to immunity following natural infection. We have developed the live attenuated nasal vaccine BPZE1 and have shown that it prevents both disease and B. pertussis infection in preclinical models. This vaccine is now in clinical development. However, the initial clinical studies have suggested that vaccine take is hampered by pre-existing antibodies to pertactin. Here, we have constructed a pertactin-deficient BPZE1 derivative called BPZE1P in order to overcome this limitation. BPZE1P colonized the murine respiratory tract as efficiently as BPZE1 and induced antibodies at levels similar to those elicited by BPZE1. In the presence of pre-existing antibodies induced by acellular pertussis vaccination, BPZE1P colonized the mouse respiratory tract more efficiently than BPZE1. Both vaccines protected equally well the murine lungs and noses from challenge with laboratory and clinical strains of B. pertussis, including pertactin-deficient strains, against which current acellular pertussis vaccines are less efficient. BPZE1P may thus be an interesting alternative to BPZE1 to overcome vaccine take limitations due to pre-existing antibodies to pertactin.


Assuntos
Vacina contra Coqueluche , Coqueluche , Animais , Proteínas da Membrana Bacteriana Externa , Bordetella pertussis/genética , Camundongos , Vacinas Atenuadas , Fatores de Virulência de Bordetella/genética , Coqueluche/prevenção & controle
5.
NPJ Vaccines ; 6(1): 6, 2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-33420041

RESUMO

Pertussis has made a spectacular rebound in countries that have switched from whole-cell (wPV) to acellular pertussis vaccines (aPV). Here, we show that, unlike wPV, aPV, while protective against lung colonization by Bordetella pertussis (Bp), did not protect BALB/c mice from nasal colonization, but instead substantially prolonged nasal carriage. aPV prevented the natural induction of nasal interleukin-17 (IL-17)-producing and interferon-γ (IFN-γ)-producing CD103+ CD44+ CD69+ CD4+-resident memory T (TRM) cells. IL-17-deficient, but not IFN-γ-deficient, mice failed to clear nasal Bp, indicating a key role of IL-17+ TRM cells in the control of nasal infection. These cells appeared essential for neutrophil recruitment, crucial for clearance of Bp tightly bound to the nasal epithelium. Transfer of IL-17+ TRM cells from Bp-infected mice to IL-17-deficient mice resulted in neutrophil recruitment and protection against nasal colonization. Thus, aPV may have augmented the Bp reservoir by inhibiting natural TRM cell induction and neutrophil recruitment, thereby contributing to the pertussis resurgence.

6.
Vaccines (Basel) ; 8(3)2020 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-32933132

RESUMO

Current pertussis vaccines protect against disease, but not against colonization by and transmission of Bordetella pertussis, whereas natural infection protects against both. The live attenuated vaccine BPZE1 was developed to mimic immunogenicity of natural infection without causing disease, and in preclinical models protected against pertussis disease and B. pertussis colonization after a single nasal administration. Phase 1 clinical studies showed that BPZE1 is safe and immunogenic in humans when administered as a liquid formulation, stored at ≤-70 °C. Although BPZE1 is stable for two years at ≤-70 °C, a lyophilized formulation stored at ≥5 °C is required for commercialization. The development of a BPZE1 drug product, filled and lyophilized directly in vials, showed that post-lyophilization survival of BPZE1 depended on the time of harvest, the lyophilization buffer, the time between harvest and lyophilization, as well as the lyophilization cycle. The animal component-free process, well defined in terms of harvest, processing and lyophilization, resulted in approximately 20% survival post-lyophilization. The resulting lyophilized drug product was stable for at least two years at -20 °C ± 10 °C, 5 °C ± 3 °C and 22.5 °C ± 2.5 °C and maintained its vaccine potency, as evaluated in a murine protection assay. This manufacturing process thus enables further clinical and commercial development of BPZE1.

7.
mSystems ; 5(3)2020 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-32430408

RESUMO

Bordetella pertussis regulates the production of its virulence factors by the two-component system BvgAS. In the virulence phase, BvgS phosphorylates BvgA, which then activates the transcription of virulence-activated genes (vags). In the avirulence phase, such as during growth in the presence of MgSO4, BvgA is not phosphorylated and the vags are not expressed. Instead, a set of virulence-repressed genes (vrgs) is expressed. Here, we performed transcriptome sequencing (RNAseq) analyses on B. pertussis cultivated with or without MgSO4 and on a BvgA-deficient Tohama I derivative. We observed that 146 genes were less expressed under modulating conditions or in the BvgA-deficient strain than under the nonmodulating condition, while 130 genes were more expressed. Some of the genes code for proteins with regulatory functions, suggesting a BvgA/S regulation cascade. To determine which genes are directly regulated by BvgA, we performed chromatin immunoprecipitation sequencing (ChIPseq) analyses. We identified 148 BvgA-binding sites, 91 within putative promoter regions, 52 within open reading frames, and 5 in noncoding regions. Among the former, 32 are in BvgA-regulated putative promoter regions. Some vags, such as dnt and fhaL, contain no BvgA-binding site, suggesting indirect BvgA regulation. Unexpectedly, BvgA also bound to some vrg putative promoter regions. Together, these observations indicate an unrecognized complexity of BvgA/S biology.IMPORTANCE Bordetella pertussis, the etiological agent of whooping cough, remains a major global health problem. Despite the global usage of whole-cell vaccines since the 1950s and of acellular vaccines in the 1990s, it still is one of the most prevalent vaccine-preventable diseases in industrialized countries. Virulence of B. pertussis is controlled by BvgA/S, a two-component system responsible for upregulation of virulence-activated genes (vags) and downregulation of virulence-repressed genes (vrgs). By transcriptome sequencing (RNAseq) analyses, we identified more than 270 vags or vrgs, and chromatin immunoprecipitation sequencing (ChIPseq) analyses revealed 148 BvgA-binding sites, 91 within putative promoter regions, 52 within open reading frames, and 5 in noncoding regions. Some vags, such as dnt and fhaL, do not contain a BvgA-binding site, suggesting indirect regulation. In contrast, several vrgs and some genes not identified by RNAseq analyses under laboratory conditions contain strong BvgA-binding sites, indicating previously unappreciated complexities of BvgA/S biology.

8.
Mol Microbiol ; 113(1): 52-67, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31587365

RESUMO

The heparin-binding hemagglutinin (HBHA) is a multifunctional protein involved in adherence of Mycobacterium tuberculosis to non-phagocytic cells and in the formation of intracytosolic lipid inclusions. We demonstrate that the expression of hbhA is regulated by a transcriptional repressor, named HbhR, in Mycobacterium marinum. The hbhR gene, located upstream of hbhA, was identified by screening a transposon insertion library and detailed analysis of a mutant overproducing HBHA. HbhR was found to repress both hbhA and hbhR transcription by binding to the promoter regions of both genes. Complementation restored production of HBHA. RNA-seq analyses comparing the mutant and parental strains uncovered 27 genes, including hbhA, that were repressed and 20 genes activated by HbhR. Among the former, the entire locus of genes coding for a type-VII secretion system, including esxA, esxB and pe-ppe paralogs, as well as the gene coding for PspA, present in intracellular lipid vesicles, was identified, as was katG, a gene involved in the sensitivity to isoniazid. The latter category contains genes that play a role in diverse functions, such as metabolism and resistance to oxidative conditions. Thus, HbhR appears to be a master regulator, linking the transcriptional regulation of virulence, metabolic and antibiotic sensitivity genes in M. marinum.


Assuntos
Proteínas de Bactérias/metabolismo , Lectinas/metabolismo , Mycobacterium marinum/genética , Fatores de Transcrição/metabolismo , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Mycobacterium marinum/metabolismo , Mycobacterium marinum/patogenicidade , Fatores de Transcrição/genética , Virulência , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
9.
PLoS One ; 13(10): e0204861, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30307950

RESUMO

The whooping cough agent Bordetella pertussis coordinately regulates the expression of its virulence factors with the two-component system BvgAS. In laboratory conditions, specific chemical modulators are used to trigger phenotypic modulation of B. pertussis from its default virulent Bvg+ phase to avirulent Bvg- or intermediate Bvgi phases, in which no virulence factors or only a subset of them are produced, respectively. Whether phenotypic modulation occurs in the host remains unknown. In this work, recombinant B. pertussis strains harboring BvgS variants were tested in a mouse model of infection and analyzed using transcriptomic approaches. Recombinant BP-BvgΔ65, which is in the Bvgi phase by default and can be up-modulated to the Bvg+ phase in vitro, could colonize the mouse nose but was rapidly cleared from the lungs, while Bvg+-phase strains colonized both organs for up to four weeks. These results indicated that phenotypic modulation, which might have restored the full virulence capability of BP-BvgΔ65, does not occur in mice or is temporally or spatially restricted and has no effect in those conditions. Transcriptomic analyses of this and other recombinant Bvgi and Bvg+-phase strains revealed that two distinct ranges of virulence gene expression allow colonization of the mouse nose and lungs, respectively. We also showed that a recombinant strain expressing moderately lower levels of the virulence genes than its wild type parent was as efficient at colonizing both organs. Altogether, genetic modifications of BvgS generate a range of phenotypic phases, which are useful tools to decipher host-pathogen interactions.


Assuntos
Proteínas de Bactérias/genética , Bordetella pertussis/patogenicidade , Mutação , Fatores de Transcrição/genética , Virulência , Coqueluche/microbiologia , Animais , Proteínas de Bactérias/metabolismo , Bordetella pertussis/genética , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Interações Hospedeiro-Patógeno , Pulmão/microbiologia , Camundongos , Nariz/microbiologia , Engenharia de Proteínas , Análise de Sequência de RNA , Fatores de Transcrição/metabolismo
10.
Sci Rep ; 8(1): 12297, 2018 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-30115990

RESUMO

Recent whooping cough (pertussis) outbreaks in many countries highlight the crucial need for a better understanding of the pathogenesis of Bordetella pertussis infection of the respiratory tract. The baboon is a recently described preclinical model for the study of B. pertussis infection and may be ideal for the evaluation of new pertussis vaccines. However, many pathophysiological aspects, including bacterial localization and interactions, have yet to be described in this model. Here, we used a baboon model of infection with a fluorescent GFP-expressing B. pertussis strain, derived from European clinical isolate B1917. Juvenile baboons were used to evaluate susceptibility to infection and transmission. Non-invasive in vivo imaging procedures, using probe-based confocal endomicroscopy coupled with bronchoscopy, were developed to track fluorescent bacterial localization and cellular interactions with host cells in the lower respiratory tract of infected animals. All B1917-GFP-challenged animals developed classical pertussis symptoms, including paroxysmal cough, nasopharyngeal colonization, and leukocytosis. In vivo co-localization with antigen presenting cells and progressive bacterial colonization of the lower airways were also assessed by imaging during the first weeks of infection. Our results demonstrate that in vivo imaging can be used to assess bacterial colonization and to point out interactions in a baboon model of pertussis.


Assuntos
Bordetella pertussis/crescimento & desenvolvimento , Pulmão/microbiologia , Coqueluche/diagnóstico por imagem , Coqueluche/transmissão , Animais , Bordetella pertussis/genética , Modelos Animais de Doenças , Proteínas de Fluorescência Verde/genética , Papio , Vacina contra Coqueluche/administração & dosagem , Coqueluche/microbiologia , Coqueluche/prevenção & controle
11.
Mucosal Immunol ; 11(6): 1753-1762, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30115992

RESUMO

BPZE1 is a live attenuated Bordetella pertussis vaccine for nasal administration to mimic the natural route of infection. Here, we studied the mechanism of BPZE1-induced immunity in the murine nasal cavity in contrast to acellular vaccine (aPV), although both vaccines protected against lung colonization. Transfer of splenocytes or serum from BPZE1-vaccinated or aPV-vaccinated mice protected naïve mice against lung colonization but not against nasal colonization. However, transfer of nasal washes from BPZE1-vaccinated mice resulted in protection against nasal colonization, which was lost in IgA-deficient or poly-Ig receptor-deficient mice, indicating that it depends on secretory IgA (SIgA) induction induced in the nose. BPZE1-induced protection against nasal colonization was long-lived despite the relatively rapid decay of SIgA, indicating a potent BPZE1-induced local memory response, likely due to CD4+ tissue-resident memory T cells induced in the nose by BPZE1. These cells produced interleukin-17 (IL-17), known to be important for SIgA secretion. Furthermore, BPZE1 failed to protect Il17-/- mice against nasal colonization by B. pertussis and induced only background levels of nasal SIgA. Thus, our results show important differences in the protective mechanism between the upper and the lower murine respiratory tract and demonstrate an IL-17-dependent SIgA-mediated mechanism of BPZE1-induced protection against B. pertussis nasopharyngeal colonization.


Assuntos
Bordetella pertussis/fisiologia , Imunoglobulina A Secretora/metabolismo , Interleucina-17/metabolismo , Nariz/imunologia , Vacina contra Coqueluche/imunologia , Receptores de Superfície Celular/metabolismo , Coqueluche/imunologia , Animais , Células Cultivadas , Humanos , Imunoglobulina A Secretora/genética , Interleucina-17/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nariz/microbiologia , Receptores de Superfície Celular/genética , Vacinas Atenuadas
12.
RNA Biol ; 15(7): 967-975, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29683387

RESUMO

Bordetella pertussis is the causative agent of whooping cough, a respiratory disease still considered as a major public health threat and for which recent re-emergence has been observed. Constant reshuffling of Bordetella pertussis genome organization was observed during evolution. These rearrangements are essentially mediated by Insertion Sequences (IS), a mobile genetic elements present in more than 230 copies in the genome, which are supposed to be one of the driving forces enabling the pathogen to escape from vaccine-induced immunity. Here we use high-throughput sequencing approaches (RNA-seq and differential RNA-seq), to decipher Bordetella pertussis transcriptome characteristics and to evaluate the impact of IS elements on transcriptome architecture. Transcriptional organization was determined by identification of transcription start sites and revealed also a large variety of non-coding RNAs including sRNAs, leaderless mRNAs or long 3' and 5'UTR including seven riboswitches. Unusual topological organizations, such as overlapping 5'- or 3'-extremities between oppositely orientated mRNA were also unveiled. The pivotal role of IS elements in the transcriptome architecture and their effect on the transcription of neighboring genes was examined. This effect is mediated by the introduction of IS harbored promoters or by emergence of hybrid promoters. This study revealed that in addition to their impact on genome rearrangements, most of the IS also impact on the expression of their flanking genes. Furthermore, the transcripts produced by IS are strain-specific due to the strain to strain variation in IS copy number and genomic context.


Assuntos
Bordetella pertussis/genética , Elementos de DNA Transponíveis/genética , Perfilação da Expressão Gênica , RNA Bacteriano/genética , Transcrição Gênica , Regiões 3' não Traduzidas , Regiões 5' não Traduzidas , Genoma Bacteriano/genética , Sequenciamento de Nucleotídeos em Larga Escala , RNA Mensageiro/genética , RNA não Traduzido/genética , Sítio de Iniciação de Transcrição
13.
Vaccine ; 36(11): 1345-1352, 2018 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-29433898

RESUMO

Pertussis or whooping cough is currently the most prevalent vaccine-preventable childhood disease despite >85% global vaccination coverage. In recent years incidence has greatly increased in several high-income countries that have switched from the first-generation, whole-cell vaccine to the newer acellular vaccines, calling for improved vaccination strategies with better vaccines. We have developed a live attenuated pertussis vaccine candidate, called BPZE1, which is currently in clinical development. Unlike other pertussis vaccines, BPZE1 has been shown to provide strong protection against infection by the causative agent of pertussis, Bordetella pertussis, in non-human primates. BPZE1 is a derivative of the B. pertussis strain Tohama I, which produces serotype 2 (Fim2) but not serotype 3 fimbriae (Fim3). As immune responses to fimbriae are likely to contribute to protection, we constructed a BPZE1 derivative, called BPZE1f3, that produces both serotypes of fimbriae. Whereas nasal vaccination of mice with BPZE1 induced antibodies to Fim2 but not to Fim3, vaccination with BPZE1f3 elicited antibodies to both Fim2 and Fim3 at approximately the same level. In mice, both BPZE1 and BPZE1f3 provided equal levels of protection against clinical isolates that either produce Fim2 alone, both Fim2 and Fim3, or no fimbriae. However, vaccination with BPZE1f3 provided significantly stronger protection against Fim3-only producing B. pertussis than vaccination with BPZE1, indicating that immune responses to fimbriae contribute to serotype-specific protection against B. pertussis infection.


Assuntos
Antígenos de Bactérias/imunologia , Bordetella pertussis/imunologia , Proteínas de Fímbrias/imunologia , Vacina contra Coqueluche/imunologia , Vacinas Atenuadas/imunologia , Fatores de Virulência de Bordetella/imunologia , Coqueluche/prevenção & controle , Animais , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia , Antígenos de Bactérias/genética , Bordetella pertussis/classificação , Bordetella pertussis/genética , Modelos Animais de Doenças , Proteínas de Fímbrias/genética , Fímbrias Bacterianas/imunologia , Humanos , Pulmão/imunologia , Pulmão/microbiologia , Camundongos , Fatores de Virulência de Bordetella/genética , Coqueluche/imunologia
14.
PLoS One ; 12(5): e0176396, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28493897

RESUMO

The whooping cough agent Bordetella pertussis controls the expression of its large virulence regulon in a coordinated manner through the two-component signal transduction system BvgAS. In addition to the genes coding for bona fide virulence factors, the Bvg regulon comprises genes of unknown function. In this work, we characterized a new Bvg-activated gene called BP2936. Homologs of BP2936 are found in other pathogenic Bordetellae and in several other species, including plant pathogens and environmental bacteria. We showed that the gene product of BP2936 is a membrane-associated methyl-transferase of free fatty acids. We thus propose to name it FmtB, for fatty acid methyl-transferase of Bordetella. The role of this protein was tested in cellular and animal models of infection, but the loss of BP2936 did not appear to affect host-pathogen interactions in those assays. The high level of conservation of BP2936 among B. pertussis isolates nevertheless argues that it probably plays a role in the life cycle of this pathogen.


Assuntos
Bordetella pertussis/genética , Metiltransferases/genética , Fatores de Virulência de Bordetella/genética , Coqueluche/genética , Proteínas de Bactérias/genética , Bordetella pertussis/enzimologia , Bordetella pertussis/patogenicidade , Ácidos Graxos não Esterificados/genética , Regulação Bacteriana da Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Humanos , Regulon/genética , Transdução de Sinais , Coqueluche/microbiologia
15.
Sci Rep ; 6: 32774, 2016 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-27620673

RESUMO

The whooping cough agent Bordetella pertussis regulates the production of its virulence factors by the BvgA/S system. Phosphorylated BvgA activates the virulence-activated genes (vags) and represses the expression of the virulence-repressed genes (vrgs) via the activation of the bvgR gene. In modulating conditions, with MgSO4, the BvgA/S system is inactive, and the vrgs are expressed. Here, we show that the expression of almost all vrgs depends on RisA, another transcriptional regulator. We also show that some vags are surprisingly no longer modulated by MgSO4 in the risA(-) background. RisA also regulates the expression of other genes, including chemotaxis and flagellar operons, iron-regulated genes, and genes of unknown function, which may or may not be controlled by BvgA/S. We identified RisK as the likely cognate RisA kinase and found that it is important for expression of most, but not all RisA-regulated genes. This was confirmed using the phosphoablative RisAD(60)N and the phosphomimetic RisAD(60)E analogues. Thus the RisA regulon adds a new layer of complexity to B. pertussis virulence gene regulation.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/fisiologia , Bordetella pertussis/genética , Regulação Bacteriana da Expressão Gênica , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/fisiologia , Regulon , Virulência/genética , Bordetella pertussis/patogenicidade , Ácido Glutâmico/química , Família Multigênica , Análise de Sequência com Séries de Oligonucleotídeos , Óperon , Fosforilação , Regiões Promotoras Genéticas , Fatores de Transcrição/metabolismo , Transcrição Gênica , Ativação Transcricional , Transcriptoma
16.
Future Microbiol ; 10(2): 241-54, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25689536

RESUMO

Whooping cough, caused by Bordetella pertussis, remains a major global health problem. Each year around 40 million of pertussis cases resulting in 200,000-400,000 annual deaths occur worldwide. Pertussis toxin is a major virulence factor of B. pertussis. Murine studies have shown its importance in bacterial colonization and in immunomodulation to evade innate or adaptive immunity. The toxin is composed of an A protomer expressing ADP-ribosyltransferase activity and a B oligomer, responsible for toxin binding to target cells. The toxin is also a major protective antigen in all currently available vaccines. However, vaccine escape mutants with altered toxin expression have recently been isolated in countries with high vaccination coverage illustrating the need for improved pertussis vaccines.


Assuntos
Bordetella pertussis/imunologia , Bordetella pertussis/patogenicidade , Toxina Pertussis , Vacina contra Coqueluche , Coqueluche/microbiologia , Coqueluche/prevenção & controle , Imunidade Adaptativa , Animais , Bordetella pertussis/genética , Humanos , Imunidade Inata , Camundongos , Mutação , Toxina Pertussis/química , Toxina Pertussis/genética , Toxina Pertussis/imunologia , Toxina Pertussis/metabolismo , Vacina contra Coqueluche/imunologia , Vacinação , Coqueluche/imunologia
17.
PLoS One ; 7(10): e47532, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23133514

RESUMO

The identification of genes important in the pathogenesis of Lyme disease Borrelia has been hampered by exceedingly low transformation rates in low-passage, infectious organisms. Using the infectious, moderately transformable B. burgdorferi derivative 5A18NP1 and signature-tagged versions of the Himar1 transposon vector pGKT, we have constructed a defined transposon library for the efficient genome-wide investigation of genes required for wild-type pathogenesis, in vitro growth, physiology, morphology, and plasmid replication. To facilitate analysis, the insertion sites of 4,479 transposon mutants were determined by sequencing. The transposon insertions were widely distributed across the entire B. burgdorferi genome, with an average of 2.68 unique insertion sites per kb DNA. The 10 linear plasmids and 9 circular plasmids had insertions in 33 to 100 percent of their predicted genes. In contrast, only 35% of genes in the 910 kb linear chromosome had incapacitating insertions; therefore, the remaining 601 chromosomal genes may represent essential gene candidates. In initial signature-tagged mutagenesis (STM) analyses, 434 mutants were examined at multiple tissue sites for infectivity in mice using a semi-quantitative, Luminex-based DNA detection method. Examples of genes found to be important in mouse infectivity included those involved in motility, chemotaxis, the phosphoenolpyruvate phosphotransferase system, and other transporters, as well as putative plasmid maintenance genes. Availability of this ordered STM library and a high-throughput screening method is expected to lead to efficient assessment of the roles of B. burgdorferi genes in the infectious cycle and pathogenesis of Lyme disease.


Assuntos
Borrelia burgdorferi/genética , Mutação , Animais , Quimiotaxia , Elementos de DNA Transponíveis , Biblioteca Gênica , Doença de Lyme/microbiologia , Camundongos , Camundongos Endogâmicos C3H , Modelos Biológicos , Modelos Genéticos , Mutagênese , Plasmídeos/metabolismo , Análise de Sequência de DNA , Carrapatos
18.
FEBS J ; 278(23): 4668-82, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21740523

RESUMO

Pertussis toxin, produced and secreted by the whooping cough agent Bordetella pertussis, is one of the most complex soluble bacterial proteins. It is actively secreted through the B. pertussis cell envelope by the Ptl secretion system, a member of the widespread type IV secretion systems. The toxin is composed of five subunits (named S1 to S5 according to their decreasing molecular weights) arranged in an A-B structure. The A protomer is composed of the enzymatically active S1 subunit, which catalyzes ADP-ribosylation of the α subunit of trimeric G proteins, thereby disturbing the metabolic functions of the target cells, leading to a variety of biological activities. The B oligomer is composed of 1S2:1S3:2S4:1S5 and is responsible for binding of the toxin to the target cell receptors and for intracellular trafficking via receptor-mediated endocytosis and retrograde transport. The toxin is one of the most important virulence factors of B. pertussis and is a component of all current vaccines against whooping cough.


Assuntos
Toxina Pertussis/química , Toxina Pertussis/metabolismo , Difosfato de Adenosina/metabolismo , Animais , Bordetella pertussis/citologia , Bordetella pertussis/metabolismo , Endocitose , Proteínas de Ligação ao GTP/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Imunidade Inata , Modelos Moleculares , Toxina Pertussis/imunologia , Biossíntese de Proteínas , Conformação Proteica , Transporte Proteico , Transcrição Gênica , Fatores de Virulência de Bordetella/imunologia , Fatores de Virulência de Bordetella/metabolismo
19.
PLoS Pathog ; 5(2): e1000293, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19214205

RESUMO

Lyme disease Borrelia can infect humans and animals for months to years, despite the presence of an active host immune response. The vls antigenic variation system, which expresses the surface-exposed lipoprotein VlsE, plays a major role in B. burgdorferi immune evasion. Gene conversion between vls silent cassettes and the vlsE expression site occurs at high frequency during mammalian infection, resulting in sequence variation in the VlsE product. In this study, we examined vlsE sequence variation in B. burgdorferi B31 during mouse infection by analyzing 1,399 clones isolated from bladder, heart, joint, ear, and skin tissues of mice infected for 4 to 365 days. The median number of codon changes increased progressively in C3H/HeN mice from 4 to 28 days post infection, and no clones retained the parental vlsE sequence at 28 days. In contrast, the decrease in the number of clones with the parental vlsE sequence and the increase in the number of sequence changes occurred more gradually in severe combined immunodeficiency (SCID) mice. Clones containing a stop codon were isolated, indicating that continuous expression of full-length VlsE is not required for survival in vivo; also, these clones continued to undergo vlsE recombination. Analysis of clones with apparent single recombination events indicated that recombinations into vlsE are nonselective with regard to the silent cassette utilized, as well as the length and location of the recombination event. Sequence changes as small as one base pair were common. Fifteen percent of recovered vlsE variants contained "template-independent" sequence changes, which clustered in the variable regions of vlsE. We hypothesize that the increased frequency and complexity of vlsE sequence changes observed in clones recovered from immunocompetent mice (as compared with SCID mice) is due to rapid clearance of relatively invariant clones by variable region-specific anti-VlsE antibody responses.


Assuntos
Variação Antigênica/genética , Antígenos de Bactérias/genética , Proteínas de Bactérias/genética , Borrelia burgdorferi/genética , Borrelia burgdorferi/imunologia , Lipoproteínas/genética , Doença de Lyme/microbiologia , Recombinação Genética , Animais , Antígenos de Bactérias/química , Antígenos de Bactérias/imunologia , Proteínas de Bactérias/química , Proteínas de Bactérias/imunologia , Sequência de Bases , Interpretação Estatística de Dados , Modelos Animais de Doenças , Feminino , Expressão Gênica , Lipoproteínas/química , Lipoproteínas/imunologia , Camundongos , Camundongos Endogâmicos C3H , Camundongos SCID , Dados de Sequência Molecular , Análise de Sequência de DNA , Análise de Sequência de Proteína
20.
Proc Natl Acad Sci U S A ; 104(5): 1673-8, 2007 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-17244707

RESUMO

Type IV secretion (T4S) systems translocate DNA and protein effectors through the double membrane of Gram-negative bacteria. The paradigmatic T4S system in Agrobacterium tumefaciens is assembled from 11 VirB subunits and VirD4. Two subunits, VirB9 and VirB7, form an important stabilizing complex in the outer membrane. We describe here the NMR structure of a complex between the C-terminal domain of the VirB9 homolog TraO (TraO(CT)), bound to VirB7-like TraN from plasmid pKM101. TraO(CT) forms a beta-sandwich around which TraN winds. Structure-based mutations in VirB7 and VirB9 of A. tumefaciens show that the heterodimer interface is conserved. Opposite this interface, the TraO structure shows a protruding three-stranded beta-appendage, and here, we supply evidence that the corresponding region of VirB9 of A. tumefaciens inserts in the membrane and protrudes extracellularly. This complex structure elucidates the molecular basis for the interaction between two essential components of a T4S system.


Assuntos
Agrobacterium tumefaciens/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/fisiologia , Espectroscopia de Ressonância Magnética/métodos , Fatores de Virulência/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , DNA/química , Proteínas de Ligação a DNA/química , Proteínas de Escherichia coli/química , Fímbrias Bacterianas , Proteínas de Membrana , Modelos Moleculares , Dados de Sequência Molecular , Nucleoproteínas/química , Proteínas Periplásmicas/química , Plasmídeos/metabolismo , Conformação Proteica , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA