Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Vaccine ; 36(21): 2937-2945, 2018 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-29699789

RESUMO

Practical methods to measure the potency of influenza vaccines are needed as alternatives for the standard single radial immunodiffusion (SRID) assay. VaxArray assays for influenza hemagglutinin (HA) and neuraminidase (NA) have been developed to address this need. In this report, we evaluate the use of these assays to assess the potency of HA and NA of an A/H3N2 subunit vaccine by determining the correlation between the amounts measured by VaxArray and the immunogenicity in mice. The antibody response after one and two doses of five formulations of the vaccine ranging from 5 µg/mL to 80 µg/mL of HA, was measured by hemagglutination inhibition (HAI) and neuraminidase inhibition (NAI) assays. For hemagglutinin, vaccine potency determined by VaxArray was equivalent to potency measured SRID and these amounts were predictive of immunogenicity, with excellent correlation between potency measured by VaxArray and the HAI geometric mean titers (GMT). Likewise, the amount of NA measured by VaxArray was predictive of the NAI GMT. The VaxArray NA assay reported non-detectable levels of intact NA for a sample that had been heat degraded at 56 °C for 20 h, demonstrating that the assay measures the native, active form of NA. Similarly, the HA potency measured by VaxArray in this heat-treated sample was very low when a monoclonal antibody was used to detect the amount of antigen bound. Importantly, the force degraded sample induced low HAI titers and the NAI titers were not measurable, supporting the conclusion that the VaxArray HA and NA assays measure the immunogenic forms of these A/H3N2 antigens. This study indicates that VaxArray assays can be used to assess the potency of HA and NA components in influenza vaccines as a proxy for immunogenicity.


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Vírus da Influenza A Subtipo H3N2/imunologia , Vacinas contra Influenza/imunologia , Neuraminidase/imunologia , Tecnologia Farmacêutica/métodos , Potência de Vacina , Proteínas Virais/imunologia , Animais , Anticorpos Antivirais/sangue , Feminino , Testes de Inibição da Hemaglutinação , Vacinas contra Influenza/administração & dosagem , Camundongos Endogâmicos BALB C , Testes de Neutralização , Vacinas de Subunidades Antigênicas/administração & dosagem , Vacinas de Subunidades Antigênicas/imunologia
2.
J Virol ; 92(4)2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29167344

RESUMO

The fifth wave of A(H7N9) virus infection in China from 2016 to 2017 caused great concern due to the large number of individuals infected, the isolation of drug-resistant viruses, and the emergence of highly pathogenic strains. Antibodies against neuraminidase (NA) provide added benefit to hemagglutinin-specific immunity and may be important contributors to the effectiveness of A(H7N9) vaccines. We generated a panel of mouse monoclonal antibodies (MAbs) to identify antigenic domains on NA of the novel A(H7N9) virus and compared their functional properties. The loop formed in the region of residue 250 (250 loop) and the domain formed by the loops containing residues 370, 400, and 430 were identified as major antigenic regions. MAbs 1E8, 2F6, 10F4, and 11B2, which recognize these two antigenic domains, were characterized in depth. These four MAbs differ in their abilities to inhibit cleavage of small and large substrates (methyl-umbelliferyl-acetyl neuraminic acid [MU-NANA] and fetuin, respectively) in NA inhibition assays. 1E8 and 11B2 did not inhibit NA cleavage of either MU-NANA or fetuin, and 2F6 inhibited cleavage of fetuin alone, whereas 10F4 inhibited cleavage of both substrates. All four MAbs reduced the in vitro spread of viruses carrying either the wild-type N9 or N9 with antiviral-resistant mutations but to different degrees. These MAbs have different in vivo levels of effectiveness: 10F4 was the most effective in protecting mice against challenge with A(H7N9) virus, 2F6 was less effective, and 11B2 failed to protect BALB/c mice at the doses tested. Our study confirms that NA-specific antibodies can protect against A(H7N9) infection and suggests that in vitro properties can be used to rank antibodies with therapeutic potential.IMPORTANCE The novel A(H7N9) viruses that emerged in China in 2013 continue to infect humans, with a high fatality rate. The most recent outbreak resulted in a larger number of human cases than previous epidemic waves. Due to the absence of a licensed vaccine and the emergence of drug-resistant viruses, there is a need to develop alternative approaches to prevent or treat A(H7N9) infection. We have made a panel of mouse monoclonal antibodies (MAbs) specific for neuraminidase (NA) of A(H7N9) viruses; some of these MAbs are effective in inhibiting viruses that are resistant to antivirals used to treat A(H7N9) patients. Binding avidity, inhibition of NA activity, and plaque formation correlated with the effectiveness of these MAbs to protect mice against lethal A(H7N9) virus challenge. This study identifies in vitro measures that can be used to predict the in vivo efficacy of NA-specific antibodies, providing a way to select MAbs for further therapeutic development.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Anticorpos Antivirais/uso terapêutico , Neuraminidase/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Proteínas Virais/imunologia , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/imunologia , China , Modelos Animais de Doenças , Cães , Feminino , Células HEK293 , Humanos , Subtipo H7N9 do Vírus da Influenza A , Pulmão/patologia , Células Madin Darby de Rim Canino , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Orthomyxoviridae/imunologia , Vírus Reordenados
3.
J Virol Methods ; 244: 23-28, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28257802

RESUMO

Antibodies that inhibit neuraminidase (NA) activity of influenza virus provide resistance against disease and have been associated with milder epidemics. Although studies have demonstrated a correlation between NA inhibition antibody titers and vaccine efficacy, neither the quantity nor form of NA is measured in seasonal and pandemic influenza vaccines. In this report, we describe development of enzyme-linked immunosorbent assays (ELISAs) that are suitable for quantitation of the native form of NA of subtype N1. The assays use mouse monoclonal antibodies (mAbs) 1H5 and CD6 to capture NAs of viruses, and a different mAb 4E9 to detect bound antigen. The 1H5-capture ELISA detects NAs of seasonal and pandemic H1N1 viruses as well as H5N1 viruses and has a limit of quantitation (LOQ) of 5.5ng/mL for seasonal H1N1A/Brisbane/59/2007 NA. The CD6-capture ELISA is specific for NA of the 2009 pandemic viruses with a LOQ of 67ng/mL for A/California/07/2009 NA. The ELISA signals in both assays are proportional to NA enzymatic activity and correlate with NA immunogenicity. The ELISAs we describe may expedite the development of NA-based influenza vaccines by providing a practical assay to measure NA potency.


Assuntos
Ensaio de Imunoadsorção Enzimática/métodos , Vírus da Influenza A/enzimologia , Neuraminidase/análise , Proteínas Virais/análise , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/imunologia , Vírus da Influenza A/imunologia , Camundongos , Neuraminidase/imunologia , Proteínas Virais/imunologia
4.
J Virol ; 91(2)2017 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-27807224

RESUMO

Influenza A H3N2 variant [A(H3N2)v] viruses, which have caused human infections in the United States in recent years, originated from human seasonal H3N2 viruses that were introduced into North American swine in the mid-1990s, but they are antigenically distinct from both the ancestral and current circulating H3N2 strains. A reference A(H3N2)v virus, A/Minnesota/11/2010 (MN/10), and a seasonal H3N2 strain, A/Beijing/32/1992 (BJ/92), were chosen to determine the molecular basis for the antigenic difference between A(H3N2)v and the ancestral viruses. Viruses containing wild-type and mutant MN/10 or BJ/92 hemagglutinins (HAs) were constructed and probed for reactivity with ferret antisera against MN/10 and BJ/92 in hemagglutination inhibition assays. Among the amino acids that differ between the MN/10 and BJ/92 HAs, those in antigenic site A had little impact on the antigenic phenotype. Within antigenic site B, mutations at residues 156, 158, 189, and 193 of MN/10 HA to those in BJ/92 switched the MN/10 antigenic phenotype to that of BJ/92. Mutations at residues 156, 157, 158, 189, and 193 of BJ/92 HA to amino acids present in MN/10 were necessary for BJ/92 to become antigenically similar to MN/10. The HA amino acid substitutions responsible for switching the antigenic phenotype also impacted HA binding to sialyl receptors that are usually present in the human respiratory tract. Our study demonstrates that antigenic site B residues play a critical role in determining both the unique antigenic phenotype and receptor specificity of A(H3N2)v viruses, a finding that may facilitate future surveillance and risk assessment of novel influenza viruses. IMPORTANCE: Influenza A H3N2 variant [A(H3N2)v] viruses have caused hundreds of human infections in multiple states in the United States since 2009. Most cases have been children who had contact with swine in agricultural fairs. These viruses originated from human seasonal H3N2 viruses that were introduced into the U.S. swine population in the mid-1990s, but they are different from both these ancestral viruses and current circulating human seasonal H3N2 strains in terms of their antigenic characteristics as measured by hemagglutination inhibition (HI) assay. In this study, we identified amino acids in antigenic site B of the surface glycoprotein hemagglutinin (HA) that explain the antigenic difference between A(H3N2)v and the ancestral H3N2 strains. These amino acid mutations also alter binding to minor human-type glycans, suggesting that host adaptation may contribute to the selection of antigenically distinct H3N2 variants which pose a threat to public health.


Assuntos
Epitopos/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Vírus da Influenza A Subtipo H3N2/fisiologia , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/virologia , Receptores Virais/metabolismo , Ligação Viral , Sequência de Aminoácidos , Substituição de Aminoácidos , Aminoácidos , Animais , Anticorpos Antivirais/imunologia , Variação Antigênica , Antígenos Virais/genética , Antígenos Virais/imunologia , Epitopos/genética , Furões , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Humanos , Mutação , Infecções por Orthomyxoviridae/metabolismo , Fenótipo
5.
J Virol ; 87(16): 9290-300, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23785204

RESUMO

Influenza A viruses, including H1N1 and H5N1 subtypes, pose a serious threat to public health. Neuraminidase (NA)-related immunity contributes to protection against influenza virus infection. Antibodies to the N1 subtype provide protection against homologous and heterologous H1N1 as well as H5N1 virus challenge. Since neither the strain-specific nor conserved epitopes of N1 have been identified, we generated a panel of mouse monoclonal antibodies (MAbs) that exhibit different reactivity spectra with H1N1 and H5N1 viruses and used these MAbs to map N1 antigenic domains. We identified 12 amino acids essential for MAb binding to the NA of a recent seasonal H1N1 virus, A/Brisbane/59/2007. Of these, residues 248, 249, 250, 341, and 343 are recognized by strain-specific group A MAbs, while residues 273, 338, and 339 are within conserved epitope(s), which allows cross-reactive group B MAbs to bind the NAs of seasonal H1N1 and the 1918 and 2009 pandemic (09pdm) H1N1 as well as H5N1 viruses. A single dose of group B MAbs administered prophylactically fully protected mice against lethal challenge with seasonal and 09pdm H1N1 viruses and resulted in significant protection against the highly pathogenic wild-type H5N1 virus. Another three N1 residues (at positions 396, 397, and 456) are essential for binding of cross-reactive group E MAbs, which differ from group B MAbs in that they do not bind 09pdm H1N1 viruses. The identification of conserved N1 epitopes reveals the molecular basis for NA-mediated immunity between H1N1 and H5N1 viruses and demonstrates the potential for developing broadly protective NA-specific antibody treatments for influenza.


Assuntos
Sequência Conservada , Proteção Cruzada , Epitopos de Linfócito B/imunologia , Vírus da Influenza A Subtipo H1N1/imunologia , Virus da Influenza A Subtipo H5N1/imunologia , Neuraminidase/imunologia , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/isolamento & purificação , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/isolamento & purificação , Reações Cruzadas , Mapeamento de Epitopos , Epitopos de Linfócito B/genética , Imunização Passiva , Camundongos , Camundongos Endogâmicos BALB C , Neuraminidase/genética , Infecções por Orthomyxoviridae/prevenção & controle , Análise de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA