Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
iScience ; 27(5): 109749, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38706850

RESUMO

Insulin signaling to the glomerular podocyte via the insulin receptor (IR) is critical for kidney function. In this study we show that near-complete knockout of the closely related insulin-like growth factor 1 receptor (IGF1R) in podocytes is detrimental, resulting in albuminuria in vivo and podocyte cell death in vitro. In contrast, partial podocyte IGF1R knockdown confers protection against doxorubicin-induced podocyte injury. Proteomic analysis of cultured podocytes revealed that while near-complete loss of podocyte IGF1R results in the downregulation of mitochondrial respiratory complex I and DNA damage repair proteins, partial IGF1R inhibition promotes respiratory complex expression. This suggests that altered mitochondrial function and resistance to podocyte stress depends on the level of IGF1R suppression, the latter determining whether receptor inhibition is protective or detrimental. Our work suggests that the partial suppression of podocyte IGF1R could have therapeutic benefits in treating albuminuric kidney disease.

2.
Med ; 4(11): 761-777.e8, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37863058

RESUMO

BACKGROUND: Shiga toxin (Stx)-producing Escherichia coli hemolytic uremic syndrome (STEC-HUS) is the leading cause of acute kidney injury in children, with an associated mortality of up to 5%. The mechanisms underlying STEC-HUS and why the glomerular microvasculature is so susceptible to injury following systemic Stx infection are unclear. METHODS: Transgenic mice were engineered to express the Stx receptor (Gb3) exclusively in their kidney podocytes (Pod-Gb3) and challenged with systemic Stx. Human glomerular cell models and kidney biopsies from patients with STEC-HUS were also studied. FINDINGS: Stx-challenged Pod-Gb3 mice developed STEC-HUS. This was mediated by a reduction in podocyte vascular endothelial growth factor A (VEGF-A), which led to loss of glomerular endothelial cell (GEnC) glycocalyx, a reduction in GEnC inhibitory complement factor H binding, and local activation of the complement pathway. Early therapeutic inhibition of the terminal complement pathway with a C5 inhibitor rescued this podocyte-driven, Stx-induced HUS phenotype. CONCLUSIONS: This study potentially explains why systemic Stx exposure targets the glomerulus and supports the early use of terminal complement pathway inhibition in this devastating disease. FUNDING: This work was supported by the UK Medical Research Council (MRC) (grant nos. G0901987 and MR/K010492/1) and Kidney Research UK (grant nos. TF_007_20151127, RP42/2012, and SP/FSGS1/2013). The Mary Lyon Center is part of the MRC Harwell Institute and is funded by the MRC (A410).


Assuntos
Infecções por Escherichia coli , Síndrome Hemolítico-Urêmica , Nefropatias , Podócitos , Escherichia coli Shiga Toxigênica , Criança , Humanos , Camundongos , Animais , Podócitos/metabolismo , Podócitos/patologia , Toxina Shiga/genética , Toxina Shiga/metabolismo , Toxina Shiga/uso terapêutico , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/uso terapêutico , Infecções por Escherichia coli/complicações , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/metabolismo , Síndrome Hemolítico-Urêmica/tratamento farmacológico , Síndrome Hemolítico-Urêmica/metabolismo , Síndrome Hemolítico-Urêmica/patologia , Escherichia coli Shiga Toxigênica/metabolismo , Ativação do Complemento , Nefropatias/patologia
3.
BMJ Open ; 13(8): e071629, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37553192

RESUMO

INTRODUCTION: Congenital heart disease (CHD) represents the most common birth defect, affecting from 0.4% to 1.2% of children born in developed countries. The survival of these patients has increased significantly, but CHD remains one of the major causes of neonatal and childhood death. The aetiology of CHD is complex, with some evidence of both genetic and environmental causes. However, there is still lack of knowledge regarding modifiable risk factors and molecular and genetic mechanisms underlying the development of CHD. This study aims to develop a prospective cohort of patients undergoing cardiac procedures that will bring together routinely collected clinical data and biological samples from patients and their biological mothers, in order to investigate risk factors and predictors of postoperative-outcomes, as well as better understanding the effect of the surgical intervention on the early and long-term outcomes. METHODS AND ANALYSIS: Children OMACp (OMACp, outcome monitoring after cardiac procedure in congenital heart disease) is a multicentre, prospective cohort study recruiting children with CHD undergoing a cardiac procedure. The study aims to recruit 3000 participants over 5 years (2019-2024) across multiple UK sites. Routine clinical data will be collected, as well as participant questionnaires collecting sociodemographic, NHS resource use and quality of life data. Biological samples (blood, urine and surgical waste tissue from patients, and blood and urine samples from biological mothers) will be collected where consent has been obtained. Follow-up outcome and questionnaire data will be collected for 5 years. ETHICS AND DISSEMINATION: The study was approved by the London-Brent Research Ethics Committee on 30 July 2019 (19/SW/0113). Participants (or their parent/guardian if under 16 years of age) must provide informed consent prior to being recruited into the study. Mothers who wish to take part must also provide informed consent prior to being recruited. The study is sponsored by University Hospitals Bristol and Weston Foundation Trust and is managed by the University of Bristol. Children OMACp is adopted onto the National Institute for Health Research Clinical Research Network portfolio. Findings will be disseminated through peer-reviewed publications, presentation at conference, meetings and through patient organisations and newsletters. TRIAL REGISTRATION NUMBER: ISRCTN17650644.


Assuntos
Cardiopatias Congênitas , Qualidade de Vida , Recém-Nascido , Gravidez , Feminino , Humanos , Lactente , Criança , Adulto Jovem , Estudos Prospectivos , Parto , Cardiopatias Congênitas/cirurgia , Medição de Risco , Estudos Multicêntricos como Assunto
4.
J Extracell Vesicles ; 12(2): e12304, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36785873

RESUMO

Extracellular vesicles (EV) are membranous particles secreted by all cells and found in body fluids. Established EV contents include a variety of RNA species, proteins, lipids and metabolites that are considered to reflect the physiological status of their parental cells. However, to date, little is known about cell-type enriched EV cargo in complex EV mixtures, especially in urine. To test whether EV secretion from distinct human kidney cells in culture differ and can recapitulate findings in normal urine, we comprehensively analysed EV components, (particularly miRNAs, long RNAs and protein) from conditionally immortalised human kidney cell lines (podocyte, glomerular endothelial, mesangial and proximal tubular cells) and compared to EV secreted in human urine. EV from cell culture media derived from immortalised kidney cells were isolated by hydrostatic filtration dialysis (HFD) and characterised by electron microscopy (EM), nanoparticle tracking analysis (NTA) and Western blotting (WB). RNA was isolated from EV and subjected to miRNA and RNA sequencing and proteins were profiled by tandem mass tag proteomics. Representative sets of EV miRNAs, RNAs and proteins were detected in each cell type and compared to human urinary EV isolates (uEV), EV cargo database, kidney biopsy bulk RNA sequencing and proteomics, and single-cell transcriptomics. This revealed that a high proportion of the in vitro EV signatures were also found in in vivo datasets. Thus, highlighting the robustness of our in vitro model and showing that this approach enables the dissection of cell type specific EV cargo in biofluids and the potential identification of cell-type specific EV biomarkers of kidney disease.


Assuntos
Vesículas Extracelulares , MicroRNAs , Humanos , Vesículas Extracelulares/metabolismo , MicroRNAs/metabolismo , Células Epiteliais/metabolismo , Microscopia Eletrônica , Rim/metabolismo
5.
Adv Drug Deliv Rev ; 182: 114045, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34767865

RESUMO

The global prevalence of diabetes mellitus was estimated to be 463 million people in 2019 and is predicted to rise to 700 million by 2045. The associated financial and societal costs of this burgeoning epidemic demand an understanding of the pathology of this disease, and its complications, that will inform treatment to enable improved patient outcomes. Nearly two decades after the sequencing of the human genome, the significance of noncoding RNA expression is still being assessed. The family of functional noncoding RNAs known as microRNAs regulates the expression of most genes encoded by the human genome. Altered microRNA expression profiles have been observed both in diabetes and in diabetic complications. These transcripts therefore have significant potential and novelty as targets for therapy, therapeutic agents and biomarkers.


Assuntos
Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/fisiopatologia , Portadores de Fármacos , MicroRNAs/farmacologia , MicroRNAs/uso terapêutico , Biomarcadores , Complicações do Diabetes/tratamento farmacológico , Complicações do Diabetes/fisiopatologia , Fibrose/tratamento farmacológico , Fibrose/fisiopatologia , Humanos , Hipoglicemiantes/farmacologia , Inflamação/metabolismo , MicroRNAs/administração & dosagem , Sistemas de Liberação de Fármacos por Nanopartículas
6.
Wellcome Open Res ; 7: 112, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37274450

RESUMO

Background: Endstage kidney failure rates are higher in South Asians than in White Europeans. Low birth weight is associated with adult chronic kidney disease and is more common in South Asians. Foetal kidney size was smaller in South Asians in the Born in Bradford (BiB) birth cohort. As part of BiB follow up, we aimed to investigate if there were ethnic differences in kidney function and blood pressure in early childhood and whether this was different by foetal kidney size. Methods: Serum creatinine, cystatin C, urea, and urinary albumin to creatinine ratio (ACR), protein to creatinine ratio (PCR) and retinol binding protein (RBP) were analysed in blood and urine samples from those who participated in the BiB follow-up at 7-11 years. Ethnicity was categorised by parental self-report as White European and South Asian. Estimated glomerular filtration rate (eGFR) was calculated using Schwartz, and cystatin C Zappitelli and Filler equations. Linear regression was used to examine the association between ethnicity and eGFR, PCR and blood pressure. Results: 1591 children provided blood (n=1403) or urine (n=625) samples. Mean eGFR was 92 ml/min/1.73m 2 (standard deviation (SD) 9) using Schwartz (n=1156) and 94 (SD 11) using Zappitelli (n=1257). CKD prevalence was rare (1 with eGFR <60 ml/min/1.73m 2, 14 (2.4%) had raised ACR (>2.5 mg/mmol in boys/3.5 mg/mmol in girls). Diastolic blood pressure was higher in South Asian children (difference 2.04 mmHg, 95% CI 0.99 to 3.10) but was not significant in adjusted analysis. There was no evidence of association in adjusted models between ethnicity and any eGFR or urinary measure at this age. Conclusions: There was no evidence of significant ethnic differences in kidney function at pre-pubertal age despite differences in kidney volume at birth. Longitudinal follow-up is required to track ethnic patterns in kidney function and blood pressure as children develop through puberty.

7.
Diabetologia ; 64(7): 1690-1702, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33758952

RESUMO

AIMS/HYPOTHESIS: Podocyte loss or injury is one of the earliest features observed in the pathogenesis of diabetic kidney disease (DKD), which is the leading cause of end-stage renal failure worldwide. Dysfunction in the IGF axis, including in IGF binding proteins (IGFBPs), is associated with DKD, particularly in the early stages of disease progression. The aim of this study was to investigate the potential roles of IGFBPs in the development of type 2 DKD, focusing on podocytes. METHODS: IGFBP expression was analysed in the Pima DKD cohort, alongside data from the Nephroseq database, and in ex vivo human glomeruli. Conditionally immortalised human podocytes and glomerular endothelial cells were studied in vitro, where IGFBP-1 expression was analysed using quantitative PCR and ELISAs. Cell responses to IGFBPs were investigated using migration, cell survival and adhesion assays; electrical cell-substrate impedance sensing; western blotting; and high-content automated imaging. RESULTS: Data from the Pima DKD cohort and from the Nephroseq database demonstrated a significant reduction in glomerular IGFBP-1 in the early stages of human type 2 DKD. In the glomerulus, IGFBP-1 was predominantly expressed in podocytes and controlled by phosphoinositide 3-kinase (PI3K)-forkhead box O1 (FoxO1) activity. In vitro, IGFBP-1 signalled to podocytes via ß1-integrins, resulting in increased phosphorylation of focal-adhesion kinase (FAK), increasing podocyte motility, adhesion, electrical resistance across the adhesive cell layer and cell viability. CONCLUSIONS/INTERPRETATION: This work identifies a novel role for IGFBP-1 in the regulation of podocyte function and that the glomerular expression of IGFBP-1 is reduced in the early stages of type 2 DKD, via reduced FoxO1 activity. Thus, we hypothesise that strategies to maintain glomerular IGFBP-1 levels may be beneficial in maintaining podocyte function early in DKD.


Assuntos
Diabetes Mellitus Tipo 2/patologia , Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Glomérulos Renais/metabolismo , Podócitos/metabolismo , Biópsia , Células Cultivadas , Estudos de Coortes , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Humanos , Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Integrina beta1/metabolismo , Rim/metabolismo , Rim/patologia , Glomérulos Renais/patologia , Podócitos/patologia , Transdução de Sinais/genética
8.
Proc Natl Acad Sci U S A ; 117(27): 15862-15873, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32561647

RESUMO

Albuminuria is an independent risk factor for the progression to end-stage kidney failure, cardiovascular morbidity, and premature death. As such, discovering signaling pathways that modulate albuminuria is desirable. Here, we studied the transcriptomes of podocytes, key cells in the prevention of albuminuria, under diabetic conditions. We found that Neuropeptide Y (NPY) was significantly down-regulated in insulin-resistant vs. insulin-sensitive mouse podocytes and in human glomeruli of patients with early and late-stage diabetic nephropathy, as well as other nondiabetic glomerular diseases. This contrasts with the increased plasma and urinary levels of NPY that are observed in such conditions. Studying NPY-knockout mice, we found that NPY deficiency in vivo surprisingly reduced the level of albuminuria and podocyte injury in models of both diabetic and nondiabetic kidney disease. In vitro, podocyte NPY signaling occurred via the NPY2 receptor (NPY2R), stimulating PI3K, MAPK, and NFAT activation. Additional unbiased proteomic analysis revealed that glomerular NPY-NPY2R signaling predicted nephrotoxicity, modulated RNA processing, and inhibited cell migration. Furthermore, pharmacologically inhibiting the NPY2R in vivo significantly reduced albuminuria in adriamycin-treated glomerulosclerotic mice. Our findings suggest a pathogenic role of excessive NPY-NPY2R signaling in the glomerulus and that inhibiting NPY-NPY2R signaling in albuminuric kidney disease has therapeutic potential.


Assuntos
Albuminúria/metabolismo , Nefropatias/metabolismo , Neuropeptídeo Y/metabolismo , Receptores de Neuropeptídeo Y/metabolismo , Transdução de Sinais/fisiologia , Animais , Arginina/análogos & derivados , Arginina/farmacologia , Benzazepinas/farmacologia , Diabetes Mellitus Experimental/metabolismo , Nefropatias Diabéticas , Modelos Animais de Doenças , Regulação para Baixo , Doxorrubicina/farmacologia , Humanos , Insulina/metabolismo , Nefropatias/patologia , Glomérulos Renais/efeitos dos fármacos , Glomérulos Renais/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Neuropeptídeo Y/farmacologia , Neuropeptídeo Y/urina , Podócitos/metabolismo , Proteômica , Receptores de Neuropeptídeo Y/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
9.
Artigo em Inglês | MEDLINE | ID: mdl-30524379

RESUMO

Diabetic kidney disease (DKD) is the leading cause of end-stage renal disease worldwide, occuring in approximately one-third of diabetic patients. One of the earliest hallmarks of DKD is albuminuria, often occurring following disruptions to the glomerular filtration barrier. Podocytes are highly specialized cells with a central role in filtration barrier maintenance; hence, podocyte dysfunction is a major cause of albuminuria in many settings, including DKD. Numerous studies over the last decade have highlighted the importance of intact podocyte insulin responses in the maintenance of podocyte function. This review summarizes our current perspectives on podocyte insulin signaling, highlighting evidence to support the notion that dysregulated podocyte insulin responses contribute toward podocyte damage, particularly during the pathogenesis of DKD.

10.
Sci Rep ; 8(1): 3902, 2018 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-29500363

RESUMO

Disruption of the insulin-PI3K-Akt signalling pathway in kidney podocytes causes endoplasmic reticulum (ER) stress, leading to podocyte apoptosis and proteinuria in diabetic nephropathy. We hypothesised that by improving insulin sensitivity we could protect podocytes from ER stress. Here we use established activating transcription factor 6 (ATF6)- and ER stress element (ERSE)-luciferase assays alongside a novel high throughput imaging-based C/EBP homologous protein (CHOP) assay to examine three models of improved insulin sensitivity. We find that by improving insulin sensitivity at the level of the insulin receptor (IR), either by IR over-expression or by knocking down the negative regulator of IR activity, protein tyrosine-phosphatase 1B (PTP1B), podocytes are protected from ER stress caused by fatty acids or diabetic media containing high glucose, high insulin and inflammatory cytokines TNFα and IL-6. However, contrary to this, knockdown of the negative regulator of PI3K-Akt signalling, phosphatase and tensin homolog deleted from chromosome 10 (PTEN), sensitizes podocytes to ER stress and apoptosis, despite increasing Akt phosphorylation. This indicates that protection from ER stress is conferred through not just the PI3K-Akt pathway, and indeed we find that inhibiting the MEK/ERK signalling pathway rescues PTEN knockdown podocytes from ER stress.


Assuntos
Estresse do Retículo Endoplasmático , Fosfatidilinositol 3-Quinases/metabolismo , Podócitos/fisiologia , Receptor de Insulina/metabolismo , Transdução de Sinais , Animais , Apoptose , Células Cultivadas , Insulina/metabolismo , Camundongos , PTEN Fosfo-Hidrolase/metabolismo , Fosforilação , Podócitos/citologia , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo
11.
Diabetologia ; 60(11): 2299-2311, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28852804

RESUMO

AIMS/HYPOTHESIS: Podocytes are insulin-responsive cells of the glomerular filtration barrier and are key in preventing albuminuria, a hallmark feature of diabetic nephropathy. While there is evidence that a loss of insulin signalling to podocytes is detrimental, the molecular mechanisms underpinning the development of podocyte insulin resistance in diabetes remain unclear. Thus, we aimed to further investigate podocyte insulin responses early in the context of diabetic nephropathy. METHODS: Conditionally immortalised human and mouse podocyte cell lines and glomeruli isolated from db/db DBA/2J mice were studied. Podocyte insulin responses were investigated with western blotting, cellular glucose uptake assays and automated fluorescent imaging of the actin cytoskeleton. Quantitative (q)RT-PCR was employed to investigate changes in mRNA. Human cell lines stably overproducing the insulin receptor (IR) and nephrin were also generated, using lentiviral constructs. RESULTS: Podocytes exposed to a diabetic environment (high glucose, high insulin and the proinflammatory cytokines TNF-α and IL-6) become insulin resistant with respect to glucose uptake and activation of phosphoinositide 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) signalling. These podocytes lose expression of the IR as a direct consequence of prolonged exposure to high insulin concentrations, which causes an increase in IR protein degradation via a proteasome-dependent and bafilomycin-sensitive pathway. Reintroducing the IR into insulin-resistant human podocytes rescues upstream phosphorylation events, but not glucose uptake. Stable expression of nephrin is also required for the insulin-stimulated glucose uptake response in podocytes and for efficient insulin-stimulated remodelling of the actin cytoskeleton. CONCLUSIONS/INTERPRETATION: Together, these results suggest that IR degradation, caused by high levels of insulin, drives early podocyte insulin resistance, and that both the IR and nephrin are required for full insulin sensitivity of this cell. This could be highly relevant for the development of nephropathy in individuals with type 2 diabetes, who are commonly hyperinsulinaemic in the early phases of their disease.


Assuntos
Resistência à Insulina/fisiologia , Insulina/farmacologia , Podócitos/efeitos dos fármacos , Podócitos/metabolismo , Receptor de Insulina/metabolismo , Animais , Western Blotting , Células Cultivadas , Nefropatias Diabéticas/metabolismo , Humanos , Imunoprecipitação , Masculino , Camundongos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos
12.
Am J Physiol Renal Physiol ; 312(2): F312-F321, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-27852608

RESUMO

Diabetic nephropathy (DN) is the leading cause of kidney failure in the world. To understand important mechanisms underlying this condition, and to develop new therapies, good animal models are required. In mouse models of type 1 diabetes, the DBA/2J strain has been shown to be more susceptible to develop kidney disease than other common strains. We hypothesized this would also be the case in type 2 diabetes. We studied db/db and wild-type (wt) DBA/2J mice and compared these with the db/db BLKS/J mouse, which is currently the most widely used type 2 DN model. Mice were analyzed from age 6 to 12 wk for systemic insulin resistance, albuminuria, and glomerular histopathological and ultrastructural changes. Body weight and nonfasted blood glucose were increased by 8 wk in both genders, while systemic insulin resistance commenced by 6 wk in female and 8 wk in male db/db DBA/2J mice. The urinary albumin-to-creatinine ratio (ACR) was closely linked to systemic insulin resistance in both sexes and was increased ~50-fold by 12 wk of age in the db/db DBA/2J cohort. Glomerulosclerosis, foot process effacement, and glomerular basement membrane thickening were observed at 12 wk of age in db/db DBA/2J mice. Compared with db/db BLKS/J mice, db/db DBA/2J mice had significantly increased levels of urinary ACR, but similar glomerular histopathological and ultrastructural changes. The db/db DBA/2J mouse is a robust model of early-stage albuminuric DN, and its levels of albuminuria correlate closely with systemic insulin resistance. This mouse model will be helpful in defining early mechanisms of DN and ultimately the development of novel therapies.


Assuntos
Albuminúria/patologia , Diabetes Mellitus Tipo 2/patologia , Nefropatias Diabéticas/patologia , Membrana Basal Glomerular/patologia , Resistência à Insulina/fisiologia , Rim/patologia , Albuminúria/etiologia , Albuminúria/metabolismo , Animais , Glicemia , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Nefropatias Diabéticas/etiologia , Nefropatias Diabéticas/metabolismo , Modelos Animais de Doenças , Feminino , Membrana Basal Glomerular/metabolismo , Insulina/sangue , Rim/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos DBA
13.
Trends Endocrinol Metab ; 27(11): 820-830, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27470431

RESUMO

Diabetes mellitus (DM) is the major cause of end-stage renal disease (ESRD) globally, and novel treatments are urgently needed. Current therapeutic approaches for diabetic nephropathy (DN) are focussing on blood pressure control with inhibitors of the renin-angiotensin-aldosterone system, on glycaemic and lipid control, and life-style changes. In this review, we highlight new molecular insights aiding our understanding of the initiation and progression of DN, including glomerular insulin resistance, dysregulation of cellular substrate utilisation, podocyte-endothelial communication, and inhibition of tubular sodium coupled glucose reabsorption. We believe that these mechanisms offer new therapeutic targets that can be exploited to develop important renoprotective treatments for DN over the next decade.


Assuntos
Nefropatias Diabéticas/metabolismo , Glicemia/metabolismo , Nefropatias Diabéticas/genética , Humanos , Resistência à Insulina/genética , Resistência à Insulina/fisiologia , Glomérulos Renais/metabolismo , Estresse Oxidativo/genética , Estresse Oxidativo/fisiologia , Sistema Renina-Angiotensina/genética , Sistema Renina-Angiotensina/fisiologia , Transportador 2 de Glucose-Sódio/genética , Transportador 2 de Glucose-Sódio/metabolismo
14.
Clin J Am Soc Nephrol ; 10(7): 1235-45, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-25964309

RESUMO

BACKGROUND AND OBJECTIVES: Cystinuria is a rare inherited renal stone disease. Mutations in the amino acid exchanger System b(0,+), the two subunits of which are encoded by SLC3A1 and SLC7A9, predominantly underlie this disease. The work analyzed the epidemiology of cystinuria and the influence of mutations in these two genes on disease severity in a United Kingdom cohort. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS: Prevalent patients were studied from 2012 to 2014 in the northeast and southwest of the United Kingdom. Clinical phenotypes were defined, and genetic analysis of SLC3A1 and SLC7A9 combining Sanger sequencing and multiplex ligation probe-dependent amplification was performed. RESULTS: In total, 76 patients (42 men and 34 women) were studied. All subjects had proven cystine stones. Median age of presentation (first stone episode) was 24 years old, but 21% of patients presented after 40 years old. Patients had varied clinical courses, with 37% of patients having ≥10 stone episodes; 70% had evidence of CKD, and 9% had reached ESRD as a result of cystinuria and its complications. Patients with cystinuria received a variety of different therapies, with no obvious treatment consensus. Notably, 20% of patients had staghorn calculi, with associated impaired renal function in 80% of these patients. Genetic analysis revealed that biallelic mutations were present in either SLC3A1 (n=27) or SLC7A9 (n=20); 22 patients had only one mutated allele detected (SLC3A1 in five patients and SLC7A9 in 17 patients). In total, 37 different mutant variant alleles were identified, including 12 novel mutations; 22% of mutations were caused by large gene rearrangements. No genotype-phenotype association was detected in this cohort. CONCLUSIONS: Patients with cystinuria in the United Kingdom often present atypically with staghorn calculi at ≥40 years old and commonly develop significant renal impairment. There is no association of clinical course with genotype. Treatments directed toward reducing stone burden need to be rationalized and developed to optimize patient care.


Assuntos
Sistemas de Transporte de Aminoácidos Básicos/genética , Sistemas de Transporte de Aminoácidos Neutros/genética , Cistinúria/genética , Mutação , Adolescente , Adulto , Idade de Início , Criança , Pré-Escolar , Cistinúria/diagnóstico , Cistinúria/epidemiologia , Cistinúria/terapia , Análise Mutacional de DNA/métodos , Progressão da Doença , Feminino , Frequência do Gene , Predisposição Genética para Doença , Humanos , Cálculos Renais/diagnóstico , Cálculos Renais/epidemiologia , Cálculos Renais/genética , Falência Renal Crônica/diagnóstico , Falência Renal Crônica/epidemiologia , Falência Renal Crônica/genética , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase Multiplex , Fenótipo , Prevalência , Sistema de Registros , Insuficiência Renal Crônica/diagnóstico , Insuficiência Renal Crônica/epidemiologia , Insuficiência Renal Crônica/genética , Estudos Retrospectivos , Índice de Gravidade de Doença , Reino Unido/epidemiologia , Adulto Jovem
15.
Curr Opin Nephrol Hypertens ; 22(1): 100-6, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23104093

RESUMO

PURPOSE OF REVIEW: In recent years, it has become clear that the insulin receptor is important in a variety of renal cell types. It is through this transmembrane receptor that insulin, and to a lesser extent insulin-like growth factor, hormones bind and can control important cellular functions. This review will summarize the advances in our understanding of the role of the insulin receptor and insulin signalling in the glomeruli and tubules of the kidney. RECENT FINDINGS: The insulin receptor is important for podocyte function and when lost results in a number of features resembling diabetic nephropathy. Exciting recent data also highlight the importance of mammalian target of rapamycin in nutrient sensing and protein biosynthesis in the podocyte, which may also be regulated by the insulin receptor. The insulin receptor has also been shown to perform an important role in the distal regions of the renal tubules, regulating sodium excretion and blood pressure control here. SUMMARY: The insulin receptor is crucial for renal function in glomeruli and tubules. When signalling is diminished here, as may occur in insulin-resistant states, it may be responsible for a number of important renal complications including albuminuric glomerular disease and hypertension.


Assuntos
Glomérulos Renais/metabolismo , Túbulos Renais/metabolismo , Receptor de Insulina/metabolismo , Transdução de Sinais , Animais , Diabetes Mellitus/metabolismo , Nefropatias Diabéticas/metabolismo , Humanos , Insulina/metabolismo , Podócitos/fisiologia , Serina-Treonina Quinases TOR/metabolismo
16.
Clin Sci (Lond) ; 124(6): 351-70, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23190266

RESUMO

Ninety-one years ago insulin was discovered, which was one of the most important medical discoveries in the past century, transforming the lives of millions of diabetic patients. Initially insulin was considered only important for rapid control of blood glucose by its action on a restricted number of tissues; however, it has now become clear that this hormone controls an array of cellular processes in many different tissues. The present review will focus on the role of insulin in the kidney in health and disease.


Assuntos
Insulina/fisiologia , Rim/fisiologia , Transdução de Sinais/fisiologia , Gluconeogênese , Humanos , Resistência à Insulina/fisiologia , Glomérulos Renais/fisiologia , Síndrome Metabólica/fisiopatologia , Receptor IGF Tipo 1/fisiologia , Receptor de Insulina/fisiologia , Circulação Renal/fisiologia , Serina-Treonina Quinases TOR/fisiologia
17.
Pediatr Nephrol ; 26(4): 523-33, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20949284

RESUMO

Glomerular thrombotic microangiopathy is a hallmark feature of haemolytic uraemic syndrome, the leading cause of acute renal failure in childhood. This paper is a review of the different mechanistic pathways that lead to this histological picture in the kidney. It will focus on atypical HUS and complement dysregulation, but will also highlight some other recent advances in our understanding of this condition, including the potential role of the molecule vascular endothelial growth factor-A (VEGF-A).


Assuntos
Glomérulos Renais/fisiopatologia , Microangiopatias Trombóticas/fisiopatologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Humanos , Glomérulos Renais/metabolismo , Glomérulos Renais/patologia , Púrpura Trombocitopênica Trombótica/metabolismo , Púrpura Trombocitopênica Trombótica/patologia , Púrpura Trombocitopênica Trombótica/fisiopatologia , Microangiopatias Trombóticas/metabolismo , Microangiopatias Trombóticas/patologia
18.
Curr Diabetes Rev ; 7(1): 22-7, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21067503

RESUMO

Diabetic nephropathy (DN) presents with a gradual breakdown of the glomerular filtration barrier to protein, culminating in widespread glomerular damage and renal failure. The podocyte is the central cell of the glomerular filtration barrier, and possesses unique architectural and signaling properties guided by the expression of key podocyte specific proteins. How these cellular features are damaged by the diabetic milieu is unclear, but what is becoming increasingly clear is that damage to the podocyte is a central event in DN. Here we present accumulating evidence that insulin action itself is important in podocyte biology, and may be deranged in the pathomechanism of early DN. This introduces a rationale for therapeutic intervention to improve podocyte insulin sensitivity early in the presentation of DN.


Assuntos
Insulina/metabolismo , Podócitos/metabolismo , Animais , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Nefropatias Diabéticas/fisiopatologia , Glucose/efeitos adversos , Glucose/farmacologia , Humanos , Insulina/fisiologia , Resistência à Insulina/fisiologia , Modelos Biológicos , Podócitos/efeitos dos fármacos , Podócitos/patologia , Podócitos/fisiologia , Proteinúria/metabolismo , Proteinúria/patologia , Proteinúria/fisiopatologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
19.
Cell Metab ; 12(4): 329-340, 2010 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-20889126

RESUMO

Diabetic nephropathy (DN) is the leading cause of renal failure in the world. It is characterized by albuminuria and abnormal glomerular function and is considered a hyperglycemic "microvascular" complication of diabetes, implying a primary defect in the endothelium. However, we have previously shown that human podocytes have robust responses to insulin. To determine whether insulin signaling in podocytes affects glomerular function in vivo, we generated mice with specific deletion of the insulin receptor from their podocytes. These animals develop significant albuminuria together with histological features that recapitulate DN, but in a normoglycemic environment. Examination of "normal" insulin-responsive podocytes in vivo and in vitro demonstrates that insulin signals through the MAPK and PI3K pathways via the insulin receptor and directly remodels the actin cytoskeleton of this cell. Collectively, this work reveals the critical importance of podocyte insulin sensitivity for kidney function.


Assuntos
Insulina/fisiologia , Rim/fisiologia , Podócitos/fisiologia , Animais , Nefropatias Diabéticas , Glomérulos Renais/citologia , Camundongos , Camundongos Knockout , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Transdução de Sinais/fisiologia
20.
Curr Opin Nephrol Hypertens ; 19(4): 379-84, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20539231

RESUMO

PURPOSE OF REVIEW: In the last decade the importance of the podocyte in maintaining the integrity of the glomerular filtration barrier and prevention of albuminuria has become obvious. The leading cause of renal failure in the developed world is diabetic nephropathy. This has a defined natural history of progressive albuminuria. The two fundamental cellular changes that occur in diabetes mellitus are a failure of insulin to signal to cells and an environment of hyperglycaemia. The emerging role of these factors on the biological function of the podocyte will be reviewed. RECENT FINDINGS: Hyperglycaemia causes both deleterious and protective cellular pathways to be initiated in the podocyte, which communicate with other cell types in the glomerulus. Furthermore, the podocyte is an insulin-sensitive cell which can be directly modulated by factors that increase and decrease its sensitivity to insulin. SUMMARY: Our understanding of the cellular processes that affect the podocyte in diabetes and insulin resistance has progressed greatly in recent years and hopefully will result in new treatment strategies against the leading cause of renal failure in the developed world.


Assuntos
Glucose/fisiologia , Insulina/fisiologia , Rim/patologia , Podócitos/patologia , Animais , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/fisiopatologia , Neuropatias Diabéticas/etiologia , Neuropatias Diabéticas/patologia , Humanos , Falência Renal Crônica/metabolismo , Podócitos/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA