Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biopharm Drug Dispos ; 44(1): 113-126, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36198662

RESUMO

The blood-brain barrier (BBB) expresses a high abundance of transporters, particularly P-glycoprotein (P-gp), that regulate endogenous and exogenous molecule uptake and removal of waste. This review discusses key drug metabolism and pharmacokinetic considerations for the efflux transporter P-gp at the BBB in drug discovery and development. We highlight the differences in P-gp expression and protein levels across species but the limited observations of species-specific substrates. Given the impact of age and disease on BBB biology, we summarise the modulation of P-gp for several neurological disorders and ageing and exemplify several disease-specific hurdles or opportunities for drug exposure in the brain. Furthermore, the review includes observations of CNS-related drug-drug interactions due to the inhibition or induction of P-gp at the BBB in animal studies and humans and the need for continued evaluation especially for compounds with a narrow therapeutic window. This review focusses primarily on small molecules but also considers the impact of new chemical entities, particularly beyond Ro5 molecules and their potential to be recognised as P-gp substrates as well as advanced drug delivery systems which offer an alternative approach to achieve and sustain central nervous system exposure.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Barreira Hematoencefálica , Animais , Humanos , Barreira Hematoencefálica/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Encéfalo/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP , Proteínas de Membrana Transportadoras/metabolismo , Descoberta de Drogas
2.
Elife ; 112022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35699412

RESUMO

The pituitary represents the endocrine master regulator. In mouse, the gland undergoes active maturation immediately after birth. Here, we in detail portrayed the stem cell compartment of neonatal pituitary. Single-cell RNA-sequencing pictured an active gland, revealing proliferative stem as well as hormonal (progenitor) cell populations. The stem cell pool displayed a hybrid epithelial/mesenchymal phenotype, characteristic of development-involved tissue stem cells. Organoid culturing recapitulated the stem cells' phenotype, interestingly also reproducing their paracrine activity. The pituitary stem cell-activating interleukin-6 advanced organoid growth, although the neonatal stem cell compartment was not visibly affected in Il6-/- mice, likely due to cytokine family redundancy. Further transcriptomic analysis exposed a pronounced WNT pathway in the neonatal gland, shown to be involved in stem cell activation and to overlap with the (fetal) human pituitary transcriptome. Following local damage, the neonatal gland efficiently regenerates, despite absence of additional stem cell proliferation, or upregulated IL-6 or WNT expression, all in line with the already high stem cell activation status, thereby exposing striking differences with adult pituitary. Together, our study decodes the stem cell compartment of neonatal pituitary, exposing an activated state in the maturing gland. Understanding stem cell activation is key to potential pituitary regenerative prospects.


The pituitary gland is a pea-sized structure found just below the brain that produces hormones controlling everything from growth and stress to reproduction and immunity. To perform its role, the pituitary gland needs specialised hormone-producing cells, but it also contains stem cells. These stem cells can divide to produce more cells like themselves, or differentiate into cells of different types, including hormone-producing cells. In mice, the stem cells of the pituitary gland appear to be activated in the first few weeks after birth, and later become 'quiescent' (or lazy) in the adult pituitary gland. However, it remains unclear how the activated state found in the maturing gland is established and regulated. To answer this question, Laporte et al. used single-cell RNA sequencing, a technique that allows researchers to profile which genes are active in individual cells, which can provide vital information about the state and activity of a tissue. The researchers compared the cells of the maturing pituitary gland of newborn mice to the cells in the established gland of adult mice. This analysis revealed that the maturing pituitary gland is a dynamic tissue, with populations of cells that are actively dividing (including the stem cells), which the mature pituitary gland lacks. Additionally, Laporte et al. established the molecular basis for the activated state of the stem cells in the maturing pituitary gland, which relies on the activation of a cell signalling pathway called WNT. To confirm these findings, Laporte et al. used an organoid system that allowed them to recapitulate the stem cell compartment of the maturing pituitary gland in a dish. When Laporte et al. blocked WNT signalling in these organoids, the organoids failed to form or divide. Furthermore, blocking the pathway directly in newborn mice reduced the number of dividing stem cells in the pituitary gland. Both findings support the notion that WNT signalling is required to establish the activated state of the maturing pituitary gland in newborn mice. Laporte et al. also wanted to know whether the newborn pituitary gland responded to injury differently than the adult gland. It had already been established that the adult pituitary stem cells become activated upon injury, and that the gland has some regenerative capacity. However, when Laporte et al. injured the newborn pituitary gland, the gland was able to fully regenerate, despite the stem cells not becoming more activated. This is likely because these cells are already activated (or 'primed'), and do not require further activation to divide and repair the gland with the help of other proliferating cells. With these results, Laporte et al. shed light on the activated state of the stem cells in the pituitary gland of newborn mice. This provides insight into the role of these stem cells, as well as unveiling possible routes towards regenerating pituitary tissue. This could eventually prove useful in medicine, in cases when the pituitary gland is damaged or removed.


Assuntos
Hipófise , Células-Tronco , Animais , Perfilação da Expressão Gênica , Humanos , Camundongos , Organoides , Fenótipo , Hipófise/metabolismo , Células-Tronco/metabolismo
3.
Biomater Biosyst ; 7: 100054, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36824483

RESUMO

Human 3D liver microtissues/spheroids are powerful in vitro models to study drug-induced liver injury (DILI) but the small number of cells per spheroid limits the models' usefulness to study drug metabolism. In this work, we scale up the number of spheroids on both a plate and a standardized organ-chip platform by factor 100 using a basic method which requires only limited technical expertise. We successfully generated up to 100 spheroids using polymer-coated microwells in a 96-well plate (= liver-plate) or organ-chip (= liver-chip). Liver-chips display a comparable cellular CYP3A4 activity, viability, and biomarker expression as liver spheroids for at least one week, while liver-plate cultures display an overall reduced hepatic functionality. To prove its applicability to drug discovery and development, the liver-chip was used to test selected reference compounds. The test system could discriminate toxicity of the DILI-positive compound tolcapone from its less hepatotoxic structural analogue entacapone, using biochemical and morphological readouts. Following incubation with diclofenac, the liver-chips had an increased metabolite formation compared to standard spheroid cultures. In summary, we generated a human liver-chip model using a standardized organ-chip platform which combines up to 100 spheroids and can be used for the evaluation of both drug safety and metabolism.

4.
Proc Natl Acad Sci U S A ; 118(25)2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34161279

RESUMO

Stem cells in the adult pituitary are quiescent yet show acute activation upon tissue injury. The molecular mechanisms underlying this reaction are completely unknown. We applied single-cell transcriptomics to start unraveling the acute pituitary stem cell activation process as occurring upon targeted endocrine cell-ablation damage. This stem cell reaction was contrasted with the aging (middle-aged) pituitary, known to have lost damage-repair capacity. Stem cells in the aging pituitary show regressed proliferative activation upon injury and diminished in vitro organoid formation. Single-cell RNA sequencing uncovered interleukin-6 (IL-6) as being up-regulated upon damage, however only in young but not aging pituitary. Administering IL-6 to young mice promptly triggered pituitary stem cell proliferation, while blocking IL-6 or associated signaling pathways inhibited such reaction to damage. By contrast, IL-6 did not generate a pituitary stem cell activation response in aging mice, coinciding with elevated basal IL-6 levels and raised inflammatory state in the aging gland (inflammaging). Intriguingly, in vitro stem cell activation by IL-6 was discerned in organoid culture not only from young but also from aging pituitary, indicating that the aging gland's stem cells retain intrinsic activatability in vivo, likely impeded by the prevailing inflammatory tissue milieu. Importantly, IL-6 supplementation strongly enhanced the growth capability of pituitary stem cell organoids, thereby expanding their potential as an experimental model. Our study identifies IL-6 as a pituitary stem cell activator upon local damage, a competence quenched at aging, concomitant with raised IL-6/inflammatory levels in the older gland. These insights may open the way to interfering with pituitary aging.


Assuntos
Envelhecimento/patologia , Interleucina-6/metabolismo , Hipófise/patologia , Células-Tronco/patologia , Animais , Proliferação de Células , Inflamação/patologia , Camundongos , Organoides/patologia , Fenótipo , Análise de Célula Única , Transcriptoma/genética , Regulação para Cima/genética
5.
Stem Cell Reports ; 14(4): 717-729, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32243841

RESUMO

Ovarian cancer (OC) represents the most dismal gynecological cancer. Pathobiology is poorly understood, mainly due to lack of appropriate study models. Organoids, defined as self-developing three-dimensional in vitro reconstructions of tissues, provide powerful tools to model human diseases. Here, we established organoid cultures from patient-derived OC, in particular from the most prevalent high-grade serous OC (HGSOC). Testing multiple culture medium components identified neuregulin-1 (NRG1) as key factor in maximizing OC organoid development and growth, although overall derivation efficiency remained moderate (36% for HGSOC patients, 44% for all patients together). Established organoid lines showed patient tumor-dependent morphology and disease characteristics, and recapitulated the parent tumor's marker expression and mutational landscape. Moreover, the organoids displayed tumor-specific sensitivity to clinical HGSOC chemotherapeutic drugs. Patient-derived OC organoids provide powerful tools for the study of the cancer's pathobiology (such as importance of the NRG1/ERBB pathway) as well as advanced preclinical tools for (personalized) drug screening and discovery.


Assuntos
Modelos Biológicos , Técnicas de Cultura de Órgãos/métodos , Organoides/efeitos dos fármacos , Organoides/crescimento & desenvolvimento , Neoplasias Ovarianas/patologia , Antineoplásicos/farmacologia , Feminino , Humanos , Neuregulina-1/metabolismo
6.
Nat Cell Biol ; 21(8): 1041-1051, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31371824

RESUMO

Endometrial disorders represent a major gynaecological burden. Current research models fail to recapitulate the nature and heterogeneity of these diseases, thereby hampering scientific and clinical progress. Here we developed long-term expandable organoids from a broad spectrum of endometrial pathologies. Organoids from endometriosis show disease-associated traits and cancer-linked mutations. Endometrial cancer-derived organoids accurately capture cancer subtypes, replicate the mutational landscape of the tumours and display patient-specific drug responses. Organoids were also established from precancerous pathologies encompassing endometrial hyperplasia and Lynch syndrome, and inherited gene mutations were maintained. Endometrial disease organoids reproduced the original lesion when transplanted in vivo. In summary, we developed multiple organoid models that capture endometrial disease diversity and will provide powerful research models and drug screening and discovery tools.


Assuntos
Avaliação Pré-Clínica de Medicamentos , Neoplasias do Endométrio/patologia , Organoides/patologia , Doenças Uterinas/patologia , Técnicas de Cultura de Células/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Neoplasias do Endométrio/tratamento farmacológico , Neoplasias do Endométrio/metabolismo , Endométrio/patologia , Feminino , Humanos , Organoides/efeitos dos fármacos , Organoides/metabolismo , Doenças Uterinas/tratamento farmacológico , Doenças Uterinas/metabolismo
7.
J Endocrinol ; 240(2): 287-308, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30475227

RESUMO

The pituitary is the master endocrine gland, harboring stem cells of which the phenotype and role remain poorly characterized. Here, we established organoids from mouse pituitary with the aim to generate a novel research model to study pituitary stem cell biology. The organoids originated from the pituitary cells expressing the stem cell marker SOX2 were long-term expandable, displayed a stemness phenotype during expansive culture and showed specific hormonal differentiation ability, although limited, after subrenal transplantation. Application of the protocol to transgenically injured pituitary harboring an activated stem cell population, resulted in more numerous organoids. Intriguingly, these organoids presented with a cystic morphology, whereas the organoids from undamaged gland were predominantly dense and appeared more limited in expandability. Transcriptomic analysis revealed distinct epithelial phenotypes and showed that cystic organoids more resembled the pituitary phenotype, at least to an immature state, and displayed in vitro differentiation, although yet moderate. Organoid characterization further exposed facets of regulatory pathways of the putative stem cells of the pituitary and advanced new injury-activated markers. Taken together, we established a novel organoid research model revealing new insights into the identity and regulation of the putative pituitary stem cells. This organoid model may eventually lead to an interesting tool to decipher pituitary stem cell biology in both healthy and diseased gland.


Assuntos
Diferenciação Celular , Organoides/citologia , Hipófise/citologia , Células-Tronco/citologia , Animais , Técnicas de Cultura de Células , Células Cultivadas , Expressão Gênica , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos SCID , Camundongos Transgênicos , Microscopia Eletrônica de Transmissão , Organoides/metabolismo , Organoides/ultraestrutura , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Transplante de Células-Tronco/métodos , Células-Tronco/metabolismo
8.
Sci Rep ; 7(1): 16940, 2017 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-29208952

RESUMO

The pituitary gland contains SOX2-expressing stem cells. However, their functional significance remains largely unmapped. We investigated their importance by depleting SOX2+ cells through diphtheria toxin (DT)-mediated ablation. DT treatment of adult Sox2CreERT2/+;R26iDTR/+ mice (after tamoxifen-induced expression of DT receptor in SOX2+ cells) resulted in 80% obliteration of SOX2+ cells in the endocrine pituitary, coinciding with reduced pituisphere-forming activity. Counterintuitively for a stem cell population, the SOX2+ cell compartment did not repopulate. Considering the more active phenotype of the stem cells during early-postnatal pituitary maturation, SOX2+ cell ablation was also performed in 4- and 1-week-old animals. Ablation grade diminished with decreasing age and was accompanied by a proliferative reaction of the SOX2+ cells, suggesting a rescue attempt. Despite this activation, SOX2+ cells did also not recover. Finally, the major SOX2+ cell depletion in adult mice did not affect the homeostatic maintenance of pituitary hormonal cell populations, nor the corticotrope remodelling response to adrenalectomy challenge. Taken together, our study shows that pituitary SOX2+ fail to regenerate after major depletion which does not affect adult endocrine cell homeostasis and remodelling. Thus, pituitary SOX2+ cells may constitute a copious stem cell reserve or may have other critical role(s) still to be clearly defined.


Assuntos
Células-Tronco Adultas/fisiologia , Hipófise/citologia , Fatores de Transcrição SOXB1/genética , Adrenalectomia , Animais , Animais Recém-Nascidos , Toxina Diftérica/farmacologia , Feminino , Regulação da Expressão Gênica , Fator de Crescimento Semelhante a EGF de Ligação à Heparina/metabolismo , Homeostase/efeitos dos fármacos , Masculino , Camundongos Transgênicos , Hipófise/efeitos dos fármacos , Hipófise/metabolismo , Tamoxifeno/farmacologia
9.
J Endocrinol ; 234(3): R135-R158, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28615294

RESUMO

The pituitary gland plays a pivotal role in the endocrine system, steering fundamental processes of growth, metabolism, reproduction and coping with stress. The adult pituitary contains resident stem cells, which are highly quiescent in homeostatic conditions. However, the cells show marked signs of activation during processes of increased cell remodeling in the gland, including maturation at neonatal age, adaptation to physiological demands, regeneration upon injury and growth of local tumors. Although functions of pituitary stem cells are slowly but gradually uncovered, their regulation largely remains virgin territory. Since postnatal stem cells in general reiterate embryonic developmental pathways, attention is first being given to regulatory networks involved in pituitary embryogenesis. Here, we give an overview of the current knowledge on the NOTCH, WNT, epithelial-mesenchymal transition, SHH and Hippo pathways in the pituitary stem/progenitor cell compartment during various (activation) conditions from embryonic over neonatal to adult age. Most information comes from expression analyses of molecular components belonging to these networks, whereas functional extrapolation is still very limited. From this overview, it emerges that the 'big five' embryonic pathways are indeed reiterated in the stem cells of the 'lazy' homeostatic postnatal pituitary, further magnified en route to activation in more energetic, physiological and pathological remodeling conditions. Increasing the knowledge on the molecular players that pull the regulatory strings of the pituitary stem cells will not only provide further fundamental insight in postnatal pituitary homeostasis and activation, but also clues toward the development of regenerative ideas for improving treatment of pituitary deficiency and tumors.


Assuntos
Hipófise/citologia , Células-Tronco/citologia , Animais , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Humanos , Hipófise/crescimento & desenvolvimento , Hipófise/metabolismo , Transdução de Sinais , Células-Tronco/metabolismo
10.
Development ; 144(10): 1775-1786, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28442471

RESUMO

The endometrium, which is of crucial importance for reproduction, undergoes dynamic cyclic tissue remodeling. Knowledge of its molecular and cellular regulation is poor, primarily owing to a lack of study models. Here, we have established a novel and promising organoid model from both mouse and human endometrium. Dissociated endometrial tissue, embedded in Matrigel under WNT-activating conditions, swiftly formed organoid structures that showed long-term expansion capacity, and reproduced the molecular and histological phenotype of the tissue's epithelium. The supplemented WNT level determined the type of mouse endometrial organoids obtained: high WNT yielded cystic organoids displaying a more differentiated phenotype than the dense organoids obtained in low WNT. The organoids phenocopied physiological responses of endometrial epithelium to hormones, including increased cell proliferation under estrogen and maturation upon progesterone. Moreover, the human endometrial organoids replicated the menstrual cycle under hormonal treatment at both the morpho-histological and molecular levels. Together, we established an organoid culture system for endometrium, reproducing tissue epithelium physiology and allowing long-term expansion. This novel model provides a powerful tool for studying mechanisms underlying the biology as well as the pathology of this key reproductive organ.


Assuntos
Técnicas de Cultura de Células/métodos , Proliferação de Células , Endométrio/citologia , Endométrio/fisiologia , Epitélio/fisiologia , Organoides/citologia , Animais , Diferenciação Celular/genética , Proliferação de Células/genética , Células Cultivadas , Células Epiteliais/citologia , Células Epiteliais/fisiologia , Feminino , Humanos , Camundongos , Organoides/metabolismo , Fenótipo , Trombospondinas/genética , Trombospondinas/metabolismo , Proteína Wnt3A/genética , Proteína Wnt3A/metabolismo
11.
Endocrinology ; 157(2): 705-21, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26653762

RESUMO

We recently showed that the mouse pituitary holds regenerative competence. Young-adult GHCre/iDTR mice, expressing diphtheria toxin (DT) receptor in GH-producing cells, regenerate the GH(+) cells, as ablated by 3-day DT treatment (3DT), up to 60% after 5 months. The pituitary's stem cells participate in this restoration process. Here, we characterized this regenerative capacity in relation to age and recovery period and started to search for underlying molecular mechanisms. Extending the recovery period (up to 19 mo) does not result in higher regeneration levels. In addition, the regenerative competence disappears at older age, coinciding with a reduction in pituitary stem cell number and fitness. Surprisingly, prolonging DT treatment of young-adult mice to 10 days (10DT) completely blocks the regeneration, although the stem cell compartment still reacts by promptly expanding, and retains in vitro stem cell functionality. To obtain a first broad view on molecular grounds underlying reparative capacity and/or failure, the stem cell-clustering side population was analyzed by whole-genome expression analysis. A number of stemness factors and components of embryonic, epithelial-mesenchymal transition, growth factor and Hippo pathways are higher expressed in the stem cell-clustering side population of the regenerating pituitary (after 3DT) when compared with the basal gland and to the nonregenerating pituitary (after 10DT). Together, the regenerative capacity of the pituitary is limited both in age-related terms and final efficacy, and appears to rely on stem cell-associated pathway activation. Dissection of the molecular profiles may eventually identify targets to induce or boost regeneration in situations of (injury-related) pituitary deficiency.


Assuntos
Toxina Diftérica/toxicidade , Fator de Crescimento Semelhante a EGF de Ligação à Heparina/agonistas , Adeno-Hipófise/metabolismo , Regeneração/genética , Somatotrofos/metabolismo , Células-Tronco/metabolismo , Fatores Etários , Animais , Modelos Animais de Doenças , Transição Epitelial-Mesenquimal/genética , Imunofluorescência , Perfilação da Expressão Gênica , Fator de Crescimento Semelhante a EGF de Ligação à Heparina/genética , Via de Sinalização Hippo , Hipopituitarismo/genética , Hipopituitarismo/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Camundongos , Camundongos Transgênicos , Hipófise/lesões , Hipófise/metabolismo , Hipófise/fisiologia , Adeno-Hipófise/lesões , Adeno-Hipófise/fisiologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Recuperação de Função Fisiológica , Regeneração/fisiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição SOXB1/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA