RESUMO
Gas-phase formaldehyde (HCHO) is formed in high yield from the oxidation of many volatile organic compounds (VOCs) and is commonly used as a constraint when testing the performance of VOC oxidation mechanisms in models. However, prior to using HCHO as a model constraint for VOC oxidation in forested regions, it is essential to have a thorough understanding of its foliar exchange. Therefore, a controlled laboratory setup was designed to measure the emission and dry deposition of HCHO at the leaf-level to red oak (Quercus rubra) and Leyland cypress (Cupressus × leylandii) tree saplings. The results show that HCHO has a compensation point (CP) that rises exponentially with temperature (22-35 °C) with a mean range of 0.3-0.9 ppbv. The HCHO CP results are also found to be independent of the studied tree species and 40-70% relative humidity. Given that HCHO mixing ratios in forests during the daytime are usually greater than 1 ppbv, the magnitude of the CP suggests that trees generally act as a net sink of HCHO. Additionally, the results show that HCHO foliar exchange is stomatally controlled and better matches a reactivity factor (f0) of 0 as opposed to 1 in conventional dry deposition parametrizations. At 30 °C, daytime HCHO dry deposition fluxes are reduced by upward of 50% when using f0 = 0 and a nonzero HCHO CP, although deposition remains the dominant canopy sink of HCHO. A reduced deposition sink also implies the increased importance of the gas-phase photolysis of HCHO as a source of HO2.
RESUMO
Aromatic hydrocarbons make up a large fraction of anthropogenic volatile organic compounds and contribute significantly to the production of tropospheric ozone and secondary organic aerosol (SOA). Four toluene and four 1,2,4-trimethylbenzene (1,2,4-TMB) photooxidation experiments were performed in an environmental chamber under relevant polluted conditions (NO x ~ 10ppb). An extensive suite of instrumentation including two proton-transfer-reaction mass spectrometers (PTR-MS) and two chemical ionisation mass spectrometers ( NH 4 + CIMS and I- CIMS) allowed for quantification of reactive carbon in multiple generations of hydroxyl radical (OH)-initiated oxidation. Oxidation of both species produces ring-retaining products such as cresols, benzaldehydes, and bicyclic intermediate compounds, as well as ring-scission products such as epoxides and dicarbonyls. We show that the oxidation of bicyclic intermediate products leads to the formation of compounds with high oxygen content (an O : C ratio of up to 1.1). These compounds, previously identified as highly oxygenated molecules (HOMs), are produced by more than one pathway with differing numbers of reaction steps with OH, including both auto-oxidation and phenolic pathways. We report the elemental composition of these compounds formed under relevant urban high-NO conditions. We show that ring-retaining products for these two precursors are more diverse and abundant than predicted by current mechanisms. We present the speciated elemental composition of SOA for both precursors and confirm that highly oxygenated products make up a significant fraction of SOA. Ring-scission products are also detected in both the gas and particle phases, and their yields and speciation generally agree with the kinetic model prediction.
RESUMO
Sea spray aerosol (SSA) is a globally important source of particulate matter. A mesocosm study was performed to determine the relative enrichment of saccharides and inorganic ions in nascent fine (PM2.5) and coarse (PM10-2.5) SSA and the sea surface microlayer (SSML) relative to bulk seawater. Saccharides comprise a significant fraction of organic matter in fine and coarse SSA (11 and 27%, respectively). Relative to sodium, individual saccharides were enriched 14-1314-fold in fine SSA, 3-138-fold in coarse SSA, but only up to 1.0-16.2-fold in SSML. Enrichments in SSML were attributed to rising bubbles that scavenge surface-active species from seawater, while further enrichment in fine SSA likely derives from bubble films. Mean enrichment factors for major ions demonstrated significant enrichment in fine SSA for potassium (1.3), magnesium (1.4), and calcium (1.7), likely because of their interactions with organic matter. Consequently, fine SSA develops a salt profile significantly different from that of seawater. Maximal enrichments of saccharides and ions coincided with the second of two phytoplankton blooms, signifying the influence of ocean biology on selective mass transfer across the ocean-air interface.
Assuntos
Cátions Bivalentes , Fitoplâncton , Aerossóis , Poluentes Atmosféricos , Oceanos e Mares , Tamanho da Partícula , Material Particulado , Água do MarRESUMO
With the oceans covering 71% of the Earth, sea spray aerosol (SSA) particles profoundly impact climate through their ability to scatter solar radiation and serve as seeds for cloud formation. The climate properties can change when sea salt particles become mixed with insoluble organic material formed in ocean regions with phytoplankton blooms. Currently, the extent to which SSA chemical composition and climate properties are altered by biological processes in the ocean is uncertain. To better understand the factors controlling SSA composition, we carried out a mesocosm study in an isolated ocean-atmosphere facility containing 3,400 gallons of natural seawater. Over the course of the study, two successive phytoplankton blooms resulted in SSA with vastly different composition and properties. During the first bloom, aliphatic-rich organics were enhanced in submicron SSA and tracked the abundance of phytoplankton as indicated by chlorophyll-a concentrations. In contrast, the second bloom showed no enhancement of organic species in submicron particles. A concurrent increase in ice nucleating SSA particles was also observed only during the first bloom. Analysis of the temporal variability in the concentration of aliphatic-rich organic species, using a kinetic model, suggests that the observed enhancement in SSA organic content is set by a delicate balance between the rate of phytoplankton primary production of labile lipids and enzymatic induced degradation. This study establishes a mechanistic framework indicating that biological processes in the ocean and SSA chemical composition are coupled not simply by ocean chlorophyll-a concentrations, but are modulated by microbial degradation processes. This work provides unique insight into the biological, chemical, and physical processes that control SSA chemical composition, that when properly accounted for may explain the observed differences in SSA composition between field studies.