Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Small ; : e2309616, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38564782

RESUMO

Radiolabeling and nuclear imaging techniques are used to investigate the biodistribution patterns of the soft and hard protein corona around poly (lactic-co-glycolic acid) nanoparticles (PLGA NPs) after administration to healthy mice. Soft and hard protein coronas of 131I-labeled BSA or 131I-labeled serum are formed on PLGA NPs functionalized with either polyehtylenimine (PEI) or bovine serum albumin (BSA). The exchangeability of hard and soft corona is assessed in vitro by gamma counting exposing PLGA NPs with corona to non-labeled BSA, serum, or simulated body fluid. PEI PLGA NPs form larger and more stable coronas than BSA PLGA NPs. Soft coronas are more exchangeable than hard ones. The in vivo fate of PEI PLGA NPs coated with preformed 18F-labeled BSA hard and soft coronas is assessed by positron emission tomography (PET) following intravenous administration. While the soft corona shows a biodistribution similar to free 18F BSA with high activity in blood and kidney, the hard corona follows patterns characteristic of nanoparticles, accumulating in the lungs, liver, and spleen. These results show that in vivo fates of soft and hard corona are different, and that soft corona is more easily exchanged with proteins from the body, while hard corona is largely retained on the nanoparticle surface.

2.
ACS Nano ; 18(14): 10165-10183, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38533789

RESUMO

In this study, Ti3C2Tx underwent laser treatment to reshape it, resulting in the formation of a TiO2/Ti3C2Tx heterojunction. The interaction with laser light induced the formation of spherical TiO2 composed of an anatase-rutile phase on the Ti3C2Tx surface. Such a heterostructure was loaded over a titania nanotube (TNT) layer, and the surface area was enhanced through immersion in a TiCl4 solution followed by thermal treatment. Consequently, the photon-to-electron conversion efficiency exhibits a 10-fold increase as compared to bare TNT. Moreover, for the sample produced with optimized conditions, five times higher photoactivity is observed in comparison to bare TNT. It was shown that under visible light irradiation the most photoactive heterojunction based on the tubular layer reveals a substantial drop in the charge transfer resistance of about 32% with respect to the dark condition. This can be attributed to the narrower band gaps of the modified material and improvement of the separation efficiency of the photogenerated electron-hole pairs. Overall results suggest that this investigation underscores TiO2/Ti3C2Tx as a promising noble-metal-free material that enhances both the electrochemical and photoelectrochemical performances of electrode materials based on TNT that can be further used in light-harvesting applications.

3.
Heliyon ; 10(2): e24740, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38312622

RESUMO

In this study, we present a novel approach to enhancing the degradation of acetaminophen (ACT) using nanostructured hybrid nanofibers. The hybrid nanofibers were produced by employing both sol-gel and electrospinning methodologies, integrating precise quantities of silver (Ag) and boron nitride (BN) nanosheets into titanium oxide (TiO2) nanofibers and halloysite nanotubes (HNT). We extensively examined the morphology, structure, and optical properties of these materials by employing scanning electron microscopy, X-ray diffraction, Raman spectroscopy, and X-ray photoelectron spectroscopy in our analysis. In the case of the HNT-TiO2 composite, the introduction of Ag nanoparticles at concentrations of 0.5%, 1.5%, and 3% led to a significant improvement in photocatalytic activity. Under visible light exposure for 4 h, the photocatalytic activity increased from 63% (HNT-TiO2) to 78.92%, 91.21%, and 92.90%, respectively. This enhancement can be attributed to the role of Ag nanoparticles as co-catalysts, facilitating the separation of electrons and holes generated during the photocatalytic process. Furthermore, BN nanosheets served as co-catalysts, capitalizing on their distinct attributes, including exceptional thermal conductivity, chemical stability, and electrical insulation. The incorporation of BN nanosheets into the Ag (3%)/HNT-TiO2 composite at a concentration of 5% resulted in a remarkable increase in ACT degradation efficiency. The degradation efficiency improved from 59.47% to an impressive 99.29% within a 2-h irradiation period due to the presence of BN nanosheets. Toxicity and scavenging assays revealed that OH•-, O2•-, and h+ were the major contributors to ACT degradation. Moreover, across five consecutive cycles, the Ag-BN/HNT-TiO2 composite exhibited consistent and stable performance, underscoring the significant contributions of Ag and BN in augmenting the photocatalytic capabilities of the composite. Overall, our findings suggest that this novel hybrid nanofiber composite holds great promise for practical applications in environmental remediation due to its improved photocatalytic activity and stability.

4.
ACS Appl Mater Interfaces ; 16(8): 10774-10784, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38350850

RESUMO

The evolving field of photocatalysis requires the development of new functional materials, particularly those suitable for large-scale commercial systems. One particularly promising approach is the creation of hybrid organic/inorganic materials. Despite being extensively studied, materials such as polydopamine (PDA) and titanium oxide continue to show significant promise for use in such applications. Nitrogen-doped titanium oxide and free-standing PDA films obtained at the air/water interface are particularly interesting. This study introduces a straightforward and reproducible approach for synthesizing a novel class of large-scale multilayer nanocomposites. The method involves the alternate layering of high-quality materials at the air/water interface combined with precise atomic layer deposition techniques, resulting in a gradient nitrogen doping of titanium oxide layers with exceptionally sharp oxide/polymer interfaces. The analysis confirmed the presence of nitrogen in the interstitial and substitutional sites of the TiO2 lattice while maintaining the 2D-like structure of the PDA films. These chemical and structural characteristics translate into a reduction of the band gap by over 0.63 eV and an increase in the photogenerated current by over 60% compared with pure amorphous TiO2. Furthermore, the nanocomposites demonstrate excellent stability during the 1 h continuous photocurrent generation test.

5.
J Photochem Photobiol B ; 249: 112813, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37977004

RESUMO

Cancer remains a leading cause of mortality worldwide, necessitating the development of innovative therapeutic approaches. Nanoparticle-based drug delivery systems have garnered significant interest due to their multifunctionality, offering the potential to enhance cancer treatment efficacy and improve patient tolerability. Membrane-coated drug delivery systems hold great potential for enhancing the therapeutic outcome of nanoparticle-based anticancer therapies. In this study, we report the synthesis of multifunctional iron-functionalized mesoporous polydopamine nanoparticles (MPDAFe NPs). These nanoformulations demonstrate substantial potential for combining efficient drug delivery and magnetic resonance imaging (MRI) and showcase the advantages of biomimetic coating with tumor cell-derived membranes. This coating confers prolonged circulation and improved the targeting capabilities of the nanoparticles. Furthermore, comprehensive biosafety evaluations reveal negligible toxicity to normal cells, while the combined chemo- and phototherapy exhibited significant cytotoxicity towards cancer cells. Additionally, the photothermal effect evaluation highlights the enhanced cytotoxicity achieved through laser irradiation, showcasing the synergistic effects of the nanomaterials and photothermal therapy. Importantly, our chemotherapeutic effect evaluation demonstrates the superior efficacy of doxorubicin-loaded MPDAFe@Mem NPs (cancer cell membrane-coated MPDAFe NPs) in inhibiting cancer cell viability and proliferation, surpassing the potency of free doxorubicin. This study comprehensively investigates theranostic, membrane-coated drug delivery systems, underlining their potential to increase the efficacy of cancer treatment strategies. The multifunctional nature of the iron-functionalized polydopamine nanoparticles allows for efficient drug delivery and imaging capabilities, while the biomimetic coating enhances their biocompatibility and targeting ability. These findings contribute valuable insights towards the development of advanced nanomedicine for improved cancer therapeutics.


Assuntos
Hipertermia Induzida , Nanopartículas , Neoplasias , Humanos , Medicina de Precisão , Biomimética , Doxorrubicina/farmacologia , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Fototerapia/métodos , Sistemas de Liberação de Medicamentos/métodos , Imageamento por Ressonância Magnética , Ferro , Nanomedicina Teranóstica
6.
ACS Appl Mater Interfaces ; 15(30): 36922-36935, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37489635

RESUMO

Aggregation of the polydopamine (PDA) molecular building blocks at the air/water interface leads to obtaining large surface nanometric-thin films. This mechanism follows two possible pathways, namely, covalent or non-covalent self-assembly, which result in a different degree of structure order and, consequently, different structural properties. Control of this mechanism could be vital for applications that require true self-support PDA free-standing films, for example, electrochemical sensing or membrane technology. Here, we are considering the impact of boric acid (BA) and Cu2+ ions on the mentioned mechanism exclusively for the free-standing films from the air/water interface. We have employed and refined our own spectroscopic reflectometry method to achieve an exceptionally high real-time control over the thickness growth. It turned out that BA and Cu2+ ions significantly impact the film growth process. Reduction of the nanoparticles size and their number was examined via UV-vis spectroscopy and transmission electron microscopy, showing a colossal reduction in the mean diameter of nanoparticles in the case of BA and a moderate reduction in the case of Cu2+. This modification is leading to significant enhancement of the process efficiency through moderation of the topological properties of the films, as revealed by atomic force microscopy. Next, applying infrared, Raman, and X-ray photoelectron spectroscopy, we presented small amounts of metal (B or Cu) in the final structure of PDA and simultaneously their vital role in the oxidation mechanism and cross-linking through covalent or non-covalent bonds. Therefore, we revealed the possibility of synthesizing films via the expected self-assembly mechanism which has hitherto been out of control. Moreover, modification of mechanical properties toward exceptionally elastic films through the BA-assisted synthesis pathway was shown by achieving Young's modulus value up to 24.1 ± 5.6 and 18.3 ± 6.4 GPa, using nanoindentation and Brillouin light scattering, respectively.

8.
Membranes (Basel) ; 13(2)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36837707

RESUMO

In this study, we combined electrospinning of a large amount of halloysite (HNT, 95%) with nitriding to produce N-HNT-TiO2 composite nanofibers (N-H95T5 hereafter) to be used for acetaminophen (ACT) photodegradation. Investigation of the morphological and structural properties of the obtained materials did not highlight any significant difference in their morphological features and confirmed that nitrogen was evenly distributed in the samples. Photocatalytic tests under visible light showed that acetaminophen photodegraded faster in the presence of samples with nitrogen (N-H95T5) than without (H95T5 nanofibers). Moreover, the N-H95T5 nanocomposite photocatalytic activity did not change after repeated utilization (five cycles). The addition of scavengers during photocatalytic tests showed the key implication of OH•-, O2•- and h+ radicals in acetaminophen degradation. These results indicated that N-H95T5 composite nanofibers could be considered a cheap multifunctional material for photodegradation and could open new prospects for preparing tunable photocatalysts.

9.
Sci Rep ; 13(1): 475, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36627308

RESUMO

Understanding the interplay between nanoparticles (NPs) and cells is essential to designing more efficient nanomedicines. Previous research has shown the role of the cell cycle having impact on the efficiency of cellular uptake and accumulation of NPs. However, there is a limited investigation into the biological fate of NPs in cells that are permanently withdrawn from the cell cycle. Here we utilize senescent WI-38 fibroblasts, which do not divide and provide a definitive model for tracking the biological fate of silica nanoparticles (SiNPs) independent of cell cycle. We use several methods to measure the cellular uptake kinetics and intracellular retention of SiNPs, including confocal laser scanning microscopy (CLSM), flow cytometry, and transmission electron microscopy (TEM). We demonstrate that SiNPs readily enter into senescent cells. Once internalized, SiNPs do not exit and accumulate in the cytoplasm for long term. Our study provides a basis for future development of NP-based tools that can detect and target senescent cells for therapy.


Assuntos
Nanopartículas , Dióxido de Silício , Sobrevivência Celular , Transporte Biológico , Fibroblastos
10.
Adv Sci (Weinh) ; 10(7): e2206271, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36596672

RESUMO

Carbon dots (CDs) with excellent cytocompatibility, tunable optical properties, and simple synthesis routes are highly desirable for use in optical bioimaging. However, the majority of existing CDs are triggered by ultraviolet/blue light, presenting emissions in the visible/first near-infrared (NIR-I) regions, which do not allow deep tissue penetration. Emerging research into CDs with NIR-II emission in the red region has generated limited designs with poor quantum yield, restricting their in vivo imaging applications due to low penetration depth. Developing novel CDs with NIR-II emissions and high quantum yield has significant and far-reaching applications in bioimaging and photodynamic therapy. Here, it is developed for the first time Fe-doped CDs (Fe-CDs) exhibiting the excellent linear relationship between 900-1200 nm fluorescence-emission and pH values, and high quantum yield (QY-1.27%), which can be used as effective probes for in vivo NIR-II bioimaging. These findings demonstrate reliable imaging accuracy in tissue as deep as 4 mm, reflecting real-time pH changes comparable to a standard pH electrode. As an important example application, the Fe-CDs probe can non-invasively monitor in vivo gastric pH changes during the digestion process in mice, illustrating its potential applications in aiding imaging-guided diagnosis of gastric diseases or therapeutic delivery.


Assuntos
Corantes Fluorescentes , Pontos Quânticos , Animais , Camundongos , Corantes Fluorescentes/química , Fluorescência , Pontos Quânticos/química , Carbono/química , Concentração de Íons de Hidrogênio
11.
Adv Mater ; 35(9): e2209100, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36482148

RESUMO

Hybrid plasmonic devices involve a nanostructured metal supporting localized surface plasmons to amplify light-matter interaction, and a non-plasmonic material to functionalize charge excitations. Application-relevant epitaxial heterostructures, however, give rise to ballistic ultrafast dynamics that challenge the conventional semiclassical understanding of unidirectional nanometal-to-substrate energy transfer. Epitaxial Au nanoislands are studied on WSe2 with time- and angle-resolved photoemission spectroscopy and femtosecond electron diffraction: this combination of techniques resolves material, energy, and momentum of charge-carriers and phonons excited in the heterostructure. A strong non-linear plasmon-exciton interaction that transfers the energy of sub-bandgap photons very efficiently to the semiconductor is observed, leaving the metal cold until non-radiative exciton recombination heats the nanoparticles on hundreds of femtoseconds timescales. The results resolve a multi-directional energy exchange on timescales shorter than the electronic thermalization of the nanometal. Electron-phonon coupling and diffusive charge-transfer determine the subsequent energy flow. This complex dynamics opens perspectives for optoelectronic and photocatalytic applications, while providing a constraining experimental testbed for state-of-the-art modelling.

12.
NPJ Microgravity ; 8(1): 56, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36470890

RESUMO

Electrochemical energy conversion technologies play a crucial role in space missions, for example, in the Environmental Control and Life Support System (ECLSS) on the International Space Station (ISS). They are also vitally important for future long-term space travel for oxygen, fuel and chemical production, where a re-supply of resources from Earth is not possible. Here, we provide an overview of currently existing electrolytic energy conversion technologies for space applications such as proton exchange membrane (PEM) and alkaline electrolyzer systems. We discuss the governing interfacial processes in these devices influenced by reduced gravitation and provide an outlook on future applications of electrolysis systems in, e.g., in-situ resource utilization (ISRU) technologies. A perspective of computational modelling to predict the impact of the reduced gravitational environment on governing electrochemical processes is also discussed and experimental suggestions to better understand efficiency-impacting processes such as gas bubble formation and detachment in reduced gravitational environments are outlined.

13.
Sci Rep ; 12(1): 11487, 2022 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-35798769

RESUMO

In this study, zinc oxide (ZnO) powders in two different morphologies, nanowire (NW) and nanoflower (NF), have been synthesized by the hydrothermal method. The eligibility of the pristine ZnO nanopowders as a photo-active material has been revealed by designing P-SC devices via the facile drop-casting method on both glass and plastic substrates in large-area applications. The impact of physical properties and especially defect structures on photo-supercapacitor (P-SC) performance have been explored. Although the dark Coulombic efficiency (CE%) of both NW and NF-based P-SC were very close to each other, the CE% of NW P-SC increased 3 times, while the CE% of NF P-SC increased 1.7 times under the UV-light. This is because the charge carriers produced under light excitation, extend the discharge time, and as confirmed by electron paramagnetic resonance, photoluminescence, and transmission electron microscopy analyses, the performance of P-SCs made from NF powders was relatively low compared to those produced from NW due to the high core defects in NF powders. The energy density of 78.1 mWh kg-1 obtained for NF-based P-SCs is very promising, and the capacitance retention value of almost 100% for 3000 cycles showed that the P-SCs produced from these materials were entirely stable. Compared to the literature, the P-SCs we propose in this study are essential for new generation energy storage systems, thanks to their ease of design, adaptability to mass production for large-area applications, and their ability to store more energy under illumination.

14.
Materials (Basel) ; 15(8)2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35454506

RESUMO

In this work, we investigate the structural and dynamic magnetic properties of yttrium iron garnet (YIG) films grown onto gadolinium gallium garnet (GGG) substrates with thin platinum, iridium, and gold spacer layers. Separation of the YIG film from the GGG substrate by a metal film strongly affects the crystalline structure of YIG and its magnetic damping. Despite the presence of structural defects, however, the YIG films exhibit a clear ferromagnetic resonance response. The ability to tune the magnetic damping without substantial changes to magnetization offers attractive prospects for the design of complex spin-wave conduits. We show that the insertion of a 1-nm-thick metal layer between YIG and GGG already increases the effective damping parameter enough to efficiently absorb spin waves. This bilayer structure can therefore be utilized for magnonic waveguide termination. Investigating the dispersionless propagation of spin-wave packets, we demonstrate that a damping unit consisting of the YIG/metal bilayers can dissipate incident spin-wave signals with reflection coefficient R < 0.1 at a distance comparable to the spatial width of the wave packet.

15.
Biosens Bioelectron ; 207: 114141, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35298947

RESUMO

Continuous painless glucose monitoring is the greatest desire of more than 422 million diabetics worldwide. Therefore, new non-invasive and convenient approaches to glucose monitoring are more in demand than other tests for microanalytical diagnostic tools. Besides, blood glucose detection can be replaced by continuous glucose monitoring of other human biological fluids (e.g. sweat) collected non-invasively. In this study, a skin-attachable and stretchable electrochemical enzymatic sensor based on ZnO tetrapods (TPs) and a new class of 2D materials - transition metal carbides, known as MXene, was developed and their electroanalytical behavior was tailored for continuous detection glucose in sweat. The high specific area of ZnO TPs and superior electrical conductivity of MXene (Ti3C2Tx) nanoflakes enabled to produce enzymatic electrochemical glucose biosensor with enhanced sensitivity in sweat sample (29 µA mM-1 cm-2), low limit of detection (LOD ≈ 17 µM), broad linear detection range (LDR = 0.05-0.7 mM) that satisfices glucose detection application in human sweat, and advanced mechanical stability (up to 30% stretching) of the template. The developed skin-attachable stretchable electrochemical electrodes allowed to monitor the level of glucose in sweat while sugar uptake and during physical activity. Continuous in vivo monitoring of glucose in sweat obtained during 60 min correlated well with data collected by a conventional amperometric blood glucometer in vitro mode. Our findings demonstrate the high potential of developed ZnO/MXene skin-attachable stretchable sensors for biomedical applications on a daily basis.


Assuntos
Técnicas Biossensoriais , Dispositivos Eletrônicos Vestíveis , Óxido de Zinco , Glicemia , Automonitorização da Glicemia , Técnicas Eletroquímicas , Eletrodos , Glucose , Humanos , Suor
16.
Nanotechnology ; 33(20)2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35108692

RESUMO

Although hydrogen is considered by many to be the green fuel of the future, nowadays it is primarily produced through steam reforming, which is a process far from ecological. Therefore, emphasis is being put on the development of electrodes capable of the efficient production of hydrogen and oxygen from water. To make the green alternative possible, the solution should be cost-efficient and well processable, generating less waste which is a huge challenge. In this work, the laser-based modification technique of the titania nanotubes containing sputtered transition metal species (Fe, Co, Ni, and Cu) was employed. The characteristics of the electrodes are provided both for the hydrogen and oxygen evolution reactions, where the influence of the laser treatment has been found to have the opposite effect. The structural and chemical analysis of the substrate material provides insight into pathways towards more efficient, low-temperature water splitting. Laser-assisted integration of transition metal with the tubular nanostructure results in the match-like structure where the metal species are accumulated at the head. The electrochemical data indicates a significant decrease in material resistance that leads to an overpotential of only +0.69 V at 10 mA cm-2for nickel-modified material.

17.
Dalton Trans ; 51(7): 2674-2695, 2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35088785

RESUMO

The demand for fresh and clean water sources is increasing globally, and there is a need to develop novel routes to eliminate micropollutants and other harmful species from water. Photocatalysis is a promising alternative green technology that has shown great performance in the degradation of persistent pollutants. Titanium dioxide is the most used catalyst owing to its attractive physico-chemical properties, but this semiconductor presents limitations in the photocatalysis process due to the high band gap and the fast recombination of the photogenerated carriers. Herein, a novel photocatalyst has been developed, based on titanium dioxide nanofibers (TiO2 NFs) synthesized by electrospinning. The TiO2 NFs were coated by atomic layer deposition (ALD) to grow boron nitride (BN) and palladium (Pd) on their surface. The UV-Vis spectroscopy measurements confirmed the increase of the band gap and the extension of the spectral response to the visible range. The obtained TiO2/BN/Pd nanofibers were then tested for photocatalysis, and showed a drastic increase of acetaminophen (ACT) degradation (>90%), compared to only 20% degradation obtained with pure TiO2 after 4 h of visible light irradiation. The high photocatalytic activity was attributed to the good dispersion of Pd NPs on TiO2-BN nanofibers, leading to a higher transfer of photoexcited hole carriers and a decrease of photogenerated electron-charge recombination. To confirm its reusability, recycling tests on the hybrid photocatalyst TiO2/BN/Pd have been performed, showing a good stability over 5 cycles under UV and visible light. In addition, toxicity tests as well as quenching tests were carried out to check the toxicity of the byproducts formed and to determine active species responsible for the degradation. The results presented in this work demonstrate the potential of TiO2/BN/Pd nanomaterials, and open new prospects for the preparation of tunable photocatalysts.


Assuntos
Titânio
18.
Adv Mater ; 34(6): e2106314, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34847272

RESUMO

Implant-related microbial infection is a challenging clinical problem, and its treatment requires efficient eradication of the biofilm from the implant surface. Near-infrared (NIR)-responsive strategies are proposed as an emerging efficient antibacterial therapy. However, the utilization of photosensitizers or photocatalytic/photothermal nanomaterials in the available approach likely induces high potential risks of interfacial deterioration and biosafety compromise. Herein, a TiO2 /TiO2- x metasurface with potent NIR-responsive antibacterial activity is produced on a Ti alloy implant by a newly invented topochemical conversion-based alkaline-acid bidirectional hydrothermal method (aaBH). Electromagnetic simulations prove that NIR absorption and near-field distribution of the metasurface can be tuned by the dimension and arrangement of the nanostructural unit. Promising antibacterial efficacy is proved by both in vitro and in vivo tests, with low-power NIR irradiation for 10 min. Besides, the designed nanostructure in the metasurface itself also shows excellence in enhancing the adhesion-related gene expression of human gingival fibroblasts that are exposed to 10 min of NIR irradiation, proving the potent nanostructure-induced biological effects. This work provides a biosafe and upscalable metasurfacing approach with extraordinary capacity of manipulating light adsorption, photocatalysis, and biological properties.


Assuntos
Fotoquimioterapia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Humanos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Titânio/química , Titânio/farmacologia
19.
Mater Horiz ; 8(3): 912-924, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34821321

RESUMO

Nanoscale manipulation of material surfaces can create extraordinary properties, holding great potential for modulating the implant-bio interface for enhanced performance. In this study, a green, simple and biocompatible nanosurfacing approach based on weak alkalinity-activated solid-state dewetting (AAD) was for the first time developed to nano-manipulate the Ti6Al4V surface by atomic self-rearrangement. AAD treatment generated quasi-periodic titanium oxide nanopimples with high surface energy. The nanopimple-like nanostructures enhanced the osteogenic activity of osteoblasts, facilitated M2 polarization of macrophages, and modulated the cross-talk between osteoblasts and macrophages, which collectively led to significant strengthening of in vivo bone-implant interfacial bonding. In addition, the titanium oxide nanopimples strongly adhered to the Ti alloy, showing resistance to tribocorrosion damage. The results suggest strong nano-bio interfacial effects, which was not seen for the control Ti alloy processed through traditional thermal oxidation. Compared to other nanostructuring strategies, the AAD technique shows great potential to integrate high-performance, functionality, practicality and scalability for surface modification of medical implants.


Assuntos
Ligas , Titânio , Osteoblastos , Osteogênese , Próteses e Implantes
20.
Nanomaterials (Basel) ; 11(10)2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34685127

RESUMO

We developed free-standing nitrogen-doped carbon nanofiber (CNF) electrodes incorporating Co/CoOx nanoparticles (NPs) as a new cathode material for removing Acid Orange 7 (AO7; a dye for wool) from wastewater by the heterogeneous electro-Fenton reaction. We produced the free-standing N-doped CNF electrodes by electrospinning a polyacrylonitrile (PAN) and cobalt acetate solution followed by thermal carbonation of the cobalt acetate/PAN nanofibers under a nitrogen atmosphere. We then investigated electro-Fenton-based removal of AO7 from wastewater with the free-standing N-doped-CNFs-Co/CoOx electrodes, in the presence or not of Fe2+ ions as a co-catalyst. The electrochemical analysis showed the high stability of the prepared N-doped-CNF-Co/CoOx electrodes in electrochemical oxidation experiments with excellent degradation of AO7 (20 mM) at acidic to near neutral pH values (3 and 6). Electro-Fenton oxidation at 10 mA/cm2 direct current for 40 min using the N-doped-CNF-Co/CoOx electrodes loaded with 25 wt% of Co/CoOx NPs led to complete AO7 solution decolorization with total organic carbon (TOC) removal values of 92.4% at pH 3 and 93.3% at pH 6. The newly developed N-doped-CNF-Co/CoOx electrodes are an effective alternative technique for wastewater pre-treatment before the biological treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA