Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Microbiol Spectr ; 12(4): e0409123, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38441526

RESUMO

Fluorescent proteins have revolutionized science since their discovery in 1962. They have enabled imaging experiments to decipher the function of proteins, cells, and organisms, as well as gene regulation. Green fluorescent protein and all its derivatives are now standard tools in cell biology, immunology, molecular biology, and microbiology laboratories around the world. A common feature of these proteins is their dioxygen (O2)-dependent maturation allowing fluorescence, which precludes their use in anoxic contexts. In this work, we report the development and in cellulo characterization of genetic circuits encoding the O2-independent KOFP-7 protein, a flavin-binding fluorescent protein. We have optimized the genetic circuit for high bacterial fluorescence at population and single-cell level, implemented this circuit in various plasmids differing in host range, and quantified their fluorescence under both aerobic and anaerobic conditions. Finally, we showed that KOFP-7-based constructions can be used to produce fluorescing cells of Vibrio diazotrophicus, a facultative anaerobe, demonstrating the usefulness of the genetic circuits for various anaerobic bacteria. These genetic circuits can thus be modified at will, both to solve basic and applied research questions, opening a highway to shed light on the obscure anaerobic world.IMPORTANCEFluorescent proteins are used for decades, and have allowed major discoveries in biology in a wide variety of fields, and are used in environmental as well as clinical contexts. Green fluorescent protein (GFP) and all its derivatives share a common feature: they rely on the presence of dioxygen (O2) for protein maturation and fluorescence. This dependency precludes their use in anoxic environments. Here, we constructed a series of genetic circuits allowing production of KOFP-7, an O2-independant flavin-binding fluorescent protein. We demonstrated that Escherichia coli cells producing KOFP-7 are fluorescent, both at the population and single-cell levels. Importantly, we showed that, unlike cells producing GFP, cells producing KOFP-7 are fluorescent in anoxia. Finally, we demonstrated that Vibrio diazotrophicus NS1, a facultative anaerobe, is fluorescent in the absence of O2 when KOFP-7 is produced. Altogether, the development of new genetic circuits allowing O2-independent fluorescence will open new perspective to study anaerobic processes.


Assuntos
Bactérias , Flavinas , Vibrio , Proteínas de Fluorescência Verde/genética , Bactérias/genética , Oxigênio
2.
Environ Microbiol ; 24(12): 6510-6523, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36302093

RESUMO

Nitrogen (N2 ) fixation, or diazotrophy, supports a large part of primary production in oceans. Culture-independent approaches highlighted the presence in abundance of marine non-cyanobacterial diazotrophs (NCD), but their ecophysiology remains elusive, mostly because of the low number of isolated NCD and because of the lack of available genetic tools for these isolates. Here, a dual genetic and functional approach allowed unveiling the ecophysiology of a marine NCD affiliated to the species Vibrio diazotrophicus. Physiological characterization of the first marine NCD mutant obtained so far was performed using a soft-gellan assay, demonstrating that a ΔnifH mutant is not able to grow in nitrogen-free media. Furthermore, we demonstrated that V. diazotrophicus produces a thick biofilm under diazotrophic conditions, suggesting biofilm production as an adaptive response of this NCD to cope with the inhibition of nitrogen fixation by molecular oxygen. Finally, the genomic signature of V. diazotrophicus is essentially absent from metagenomic data of Tara Ocean expeditions, despite having been isolated from various marine environments. We think that the genetically tractable V. diazotrophicus strain used in this study may serve as an ideal model to study the ecophysiology of these overlooked procaryotic group.


Assuntos
Cianobactérias , Doenças não Transmissíveis , Humanos , Fixação de Nitrogênio/genética , Cianobactérias/genética , Oceanos e Mares , Nitrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA