Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(11): e2217602120, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36893270

RESUMO

Eukaryotes have cytosolic surveillance systems to detect invading microorganisms and initiate protective immune responses. In turn, host-adapted pathogens have evolved strategies to modulate these surveillance systems, which can promote dissemination and persistence in the host. The obligate intracellular pathogen Coxiella burnetii infects mammalian hosts without activating many innate immune sensors. The Defect in Organelle Trafficking/Intracellular Multiplication (Dot/Icm) protein secretion system is necessary for C. burnetii to establish a vacuolar niche inside of host cells, which sequesters these bacteria in a specialized organelle that could evade host surveillance systems. However, bacterial secretion systems often introduce agonists of immune sensors into the host cytosol during infection. For instance, nucleic acids are introduced to the host cytosol by the Dot/Icm system of Legionella pneumophila, which results in type I interferon production. Despite host infection requiring a homologous Dot/Icm system, C. burnetii does not induce type I interferon production during infection. Here, it was found that type I interferons are detrimental to C. burnetii infection and that C. burnetii blocks type I interferon production mediated by retionic acid inducible gene I (RIG-I) signaling. Two Dot/Icm effector proteins, EmcA and EmcB, are required for C. burnetii inhibition of RIG-I signaling. EmcB is sufficient to block RIG-I signaling and is a ubiquitin-specific cysteine protease capable of deconjugating ubiquitin chains from RIG-I that are necessary for signaling. EmcB preferentially cleaves K63-linked ubiquitin chains of three or more monomers, which represent ubiquitin chains that potently activate RIG-I signaling. Identification of a deubiquitinase encoded by C. burnetii provides insights into how a host-adapted pathogen antagonizes immune surveillance.


Assuntos
Coxiella burnetii , Animais , Coxiella burnetii/genética , Proteínas de Bactérias/metabolismo , Sistemas de Secreção Bacterianos/metabolismo , Enzimas Desubiquitinantes/metabolismo , Ubiquitinas/metabolismo , Interações Hospedeiro-Patógeno/genética , Mamíferos/metabolismo
2.
Infect Immun ; 86(4)2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29339460

RESUMO

Coxiella burnetii is an intracellular pathogen that replicates in a lysosome-derived vacuole. A determinant necessary for C. burnetii virulence is the Dot/Icm type IVB secretion system (T4SS). The Dot/Icm system delivers more than 100 proteins, called type IV effectors (T4Es), across the vacuolar membrane into the host cell cytosol. Several T4Es have been shown to be important for vacuolar biogenesis. Here, transposon (Tn) insertion sequencing technology (INSeq) was used to identify C. burnetii Nine Mile phase II mutants in an arrayed library, which facilitated the identification and clonal isolation of mutants deficient in 70 different T4E proteins. These effector mutants were screened in HeLa cells for deficiencies in Coxiella-containing vacuole (CCV) biogenesis. This screen identified and validated seven new T4Es that were important for vacuole biogenesis. Loss-of-function mutations in cbu0414 (coxH1), cbu0513, cbu0978 (cem3), cbu1387 (cem6), cbu1524 (caeA), cbu1752, or cbu2028 resulted in a small-vacuole phenotype. These seven mutant strains produced small CCVs in all cells tested, which included macrophage-like cells. The cbu2028::Tn mutant, though unable to develop large CCVs, had intracellular replication rates similar to the rate of the parental strain of C. burnetii, whereas the other six effector mutants defective in CCV biogenesis displayed significant reductions in intracellular replication. Vacuoles created by the cbu0513::Tn mutant did not accumulate lipidated microtubule-associated protein 1A/1B light chain 3 (LC3-II), suggesting a failure in fusion of the CCV with autophagosomes. These seven T4E proteins add to the growing repertoire of C. burnetii factors that contribute to CCV biogenesis.


Assuntos
Proteínas de Bactérias/metabolismo , Coxiella burnetii/fisiologia , Febre Q/metabolismo , Febre Q/microbiologia , Autofagossomos/metabolismo , Sistemas de Secreção Bacterianos , Coxiella burnetii/genética , Coxiella burnetii/patogenicidade , Elementos de DNA Transponíveis , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Humanos , Lisossomos/metabolismo , Macrófagos/metabolismo , Macrófagos/microbiologia , Mutação , Transporte Proteico , Vacúolos/metabolismo
3.
PLoS Pathog ; 10(7): e1004286, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25080348

RESUMO

Coxiella burnetii is an intracellular pathogen that replicates in a lysosome-derived vacuole. The molecular mechanisms used by this bacterium to create a pathogen-occupied vacuole remain largely unknown. Here, we conducted a visual screen on an arrayed library of C. burnetii NMII transposon insertion mutants to identify genes required for biogenesis of a mature Coxiella-containing vacuole (CCV). Mutants defective in Dot/Icm secretion system function or the PmrAB regulatory system were incapable of intracellular replication. Several mutants with intracellular growth defects were found to have insertions in genes encoding effector proteins translocated into host cells by the Dot/Icm system. These included mutants deficient in the effector proteins Cig57, CoxCC8 and Cbu1754. Mutants that had transposon insertions in genes important in central metabolism or encoding tRNA modification enzymes were identified based on the appearance filamentous bacteria intracellularly. Lastly, mutants that displayed a multi-vacuolar phenotype were identified. All of these mutants had a transposon insertion in the gene encoding the effector protein Cig2. Whereas vacuoles containing wild type C. burnetii displayed robust accumulation of the autophagosome protein LC3, the vacuoles formed by the cig2 mutant did not contain detectible amounts of LC3. Furthermore, interfering with host autophagy during infection by wild type C. burnetii resulted in a multi-vacuolar phenotype similar to that displayed by the cig2 mutant. Thus, a functional Cig2 protein is important for interactions between the CCV and host autophagosomes and this drives a process that enhances the fusogenic properties of this pathogen-occupied organelle.


Assuntos
Autofagia , Proteínas de Bactérias/metabolismo , Coxiella burnetii/metabolismo , Interações Hospedeiro-Patógeno/genética , Mutação/genética , Febre Q/metabolismo , Vacúolos/metabolismo , Proteínas de Bactérias/genética , Sistemas de Secreção Bacterianos/genética , Coxiella burnetii/genética , Coxiella burnetii/patogenicidade , Elementos de DNA Transponíveis/genética , Regulação Bacteriana da Expressão Gênica , Células HeLa , Humanos , Immunoblotting , Fagossomos/metabolismo , Febre Q/microbiologia , Vacúolos/microbiologia
4.
PLoS Pathog ; 9(3): e1003281, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23555272

RESUMO

Infection of plants by bacterial leaf pathogens at wound sites is common in nature. Plants defend wound sites to prevent pathogen invasion, but several pathogens can overcome spatial restriction and enter leaf tissues. The molecular mechanisms used by pathogens to suppress containment at wound infection sites are poorly understood. Here, we studied Pseudomonas syringae strains causing brown spot on bean and blossom blight on pear. These strains exist as epiphytes that can cause disease upon wounding caused by hail, sand storms and frost. We demonstrate that these strains overcome spatial restriction at wound sites by producing syringolin A (SylA), a small molecule proteasome inhibitor. Consequently, SylA-producing strains are able to escape from primary infection sites and colonize adjacent tissues along the vasculature. We found that SylA diffuses from the primary infection site and suppresses acquired resistance in adjacent tissues by blocking signaling by the stress hormone salicylic acid (SA). Thus, SylA diffusion creates a zone of SA-insensitive tissue that is prepared for subsequent colonization. In addition, SylA promotes bacterial motility and suppresses immune responses at the primary infection site. These local immune responses do not affect bacterial growth and were weak compared to effector-triggered immunity. Thus, SylA facilitates colonization from wounding sites by increasing bacterial motility and suppressing SA signaling in adjacent tissues.


Assuntos
Nicotiana/microbiologia , Peptídeos Cíclicos/metabolismo , Doenças das Plantas/microbiologia , Inibidores de Proteassoma/metabolismo , Pseudomonas syringae/metabolismo , Infecção dos Ferimentos/microbiologia , Sequência de Aminoácidos , Interações Hospedeiro-Patógeno , Dados de Sequência Molecular , Proteínas de Plantas , Complexo de Endopeptidases do Proteassoma/genética , Transdução de Sinais
5.
Mol Microbiol ; 85(2): 225-38, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22607547

RESUMO

The bacterial plant pathogen Pseudomonas syringae injects effector proteins into plant cells via a type III secretion system (T3SS), which is required for pathogenesis. The protein HrpJ is secreted by P. syringae and is required for a fully functional T3SS. A hrpJ mutant is non-pathogenic and cannot inject effectors into plant cells or secrete the harpin HrpZ1. Here we show that the hrpJ mutant also cannot secrete the harpins HrpW1 and HopAK1 or the translocator HrpK1, suggesting that these proteins are required in the translocation (injection) of effectors into plant cells. Complementation of the hrpJ mutant with secretion incompetent HrpJ derivatives restores the secretion of HrpZ1 and HrpW1 and the ability to elicit a hypersensitive response, a measure of translocation. However, growth in planta and disease symptom production is only partially restored, suggesting that secreted HrpJ may have a direct role in virulence. Transgenic Arabidopsis plants expressing HrpJ-HA complemented the virulence phenotype of the hrpJ mutant expressing a secretion incompetent HrpJ derivative and were reduced in their immune responses. Collectively, these data indicate that HrpJ has a dual role in P. syringae: inside bacterial cells HrpJ controls the secretion of translocator proteins and inside plant cells it suppresses plant immunity.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/metabolismo , Células Vegetais/microbiologia , Doenças das Plantas/microbiologia , Pseudomonas syringae/patogenicidade , Fatores de Virulência/metabolismo , Arabidopsis/microbiologia , Proteínas de Bactérias/genética , Deleção de Genes , Teste de Complementação Genética , Virulência
6.
Plant Physiol ; 154(1): 233-44, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20624999

RESUMO

Plants perceive microorganisms by recognizing microbial molecules known as pathogen-associated molecular patterns (PAMPs) inducing PAMP-triggered immunity (PTI) or by recognizing pathogen effectors inducing effector-triggered immunity (ETI). The hypersensitive response (HR), a programmed cell death response associated with ETI, is known to be inhibited by PTI. Here, we show that PTI-induced HR inhibition is due to direct or indirect restriction of the type III protein secretion system's (T3SS) ability to inject type III effectors (T3Es). We found that the Pseudomonas syringae T3SS was restricted in its ability to inject a T3E-adenylate cyclase (CyaA) injection reporter into PTI-induced tobacco (Nicotiana tabacum) cells. We confirmed this restriction with a direct injection assay that monitored the in planta processing of the AvrRpt2 T3E. Virulent P. syringae strains were able to overcome a PAMP pretreatment in tobacco or Arabidopsis (Arabidopsis thaliana) and continue to inject a T3E-CyaA reporter into host cells. In contrast, ETI-inducing P. syringae strains were unable to overcome PTI-induced injection restriction. A P. syringae pv tomato DC3000 mutant lacking about one-third of its T3E inventory was less capable of injecting into PTI-induced Arabidopsis plant cells, grew poorly in planta, and did not cause disease symptoms. PTI-induced transgenic Arabidopsis expressing the T3E HopAO1 or HopF2 allowed higher amounts of the T3E-CyaA reporter to be injected into plant cells compared to wild-type plants. Our results show that PTI-induced HR inhibition is due to direct or indirect restriction of T3E injection and that T3Es can relieve this restriction by suppressing PTI.


Assuntos
Arabidopsis/imunologia , Proteínas de Bactérias/metabolismo , Nicotiana/imunologia , Imunidade Vegetal/imunologia , Pseudomonas syringae/metabolismo , Arabidopsis/citologia , Arabidopsis/genética , Arabidopsis/microbiologia , Flagelina/farmacologia , Mutação/genética , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Imunidade Vegetal/efeitos dos fármacos , Plantas Geneticamente Modificadas , Pseudomonas fluorescens/efeitos dos fármacos , Pseudomonas fluorescens/metabolismo , Pseudomonas syringae/efeitos dos fármacos , Pseudomonas syringae/crescimento & desenvolvimento , Receptores de Reconhecimento de Padrão/metabolismo , Fatores de Tempo , Nicotiana/citologia , Nicotiana/metabolismo , Nicotiana/microbiologia
7.
Plant J ; 51(1): 32-46, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17559511

RESUMO

The model pathogen Pseudomonas syringae pv. tomato DC3000 causes bacterial speck in tomato and Arabidopsis, but Nicotiana benthamiana, an important model plant, is considered to be a non-host. Strain DC3000 injects approximately 28 effector proteins into plant cells via the type III secretion system (T3SS). These proteins were individually delivered into N. benthamiana leaf cells via T3SS-proficient Pseudomonas fluorescens, and eight, including HopQ1-1, showed some capacity to cause cell death in this test. Four gene clusters encoding 13 effectors were deleted from DC3000: cluster II (hopH1, hopC1), IV (hopD1, hopQ1-1, hopR1), IX (hopAA1-2, hopV1, hopAO1, hopG1), and native plasmid pDC3000A (hopAM1-2, hopX1, hopO1-1, hopT1-1). DC3000 mutants deleted for cluster IV or just hopQ1-1 acquired the ability to grow to high levels and produce bacterial speck lesions in N. benthamiana. HopQ1-1 showed other hallmarks of an avirulence determinant in N. benthamiana: expression in the tobacco wildfire pathogen P. syringae pv. tabaci 11528 rendered this strain avirulent in N. benthamiana, and elicitation of the hypersensitive response in N. benthamiana by HopQ1-1 was dependent on SGT1. DC3000 polymutants involving other effector gene clusters in a hopQ1-1-deficient background revealed that clusters II and IX contributed to the severity of lesion symptoms in N. benthamiana, as well as in Arabidopsis and tomato. The results support the hypothesis that the host ranges of P. syringae pathovars are limited by the complex interactions of effector repertoires with plant anti-effector surveillance systems, and they demonstrate that N. benthamiana can be a useful model host for DC3000.


Assuntos
Pseudomonas syringae/patogenicidade , Solanaceae/microbiologia , Arabidopsis/microbiologia , Morte Celular/fisiologia , Deleção de Genes , Genes Bacterianos , Solanum lycopersicum/microbiologia , Família Multigênica , Doenças das Plantas , Pseudomonas fluorescens/genética , Pseudomonas syringae/genética , Pseudomonas syringae/crescimento & desenvolvimento , Solanaceae/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA