Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Biol Evol ; 41(1)2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38152864

RESUMO

Among non-bilaterian animals, a larval apical sensory organ with integrated neurons is only found in cnidarians. Within cnidarians, an apical organ with a ciliary tuft is mainly found in Actiniaria. Whether this apical tuft has evolved independently in Actiniaria or alternatively originated in the common ancestor of Cnidaria and Bilateria and was lost in specific groups is uncertain. To test this hypothesis, we generated transcriptomes of the apical domain during the planula stage of four species representing three key groups of cnidarians: Aurelia aurita (Scyphozoa), Nematostella vectensis (Actiniaria), and Acropora millepora and Acropora tenuis (Scleractinia). We showed that the canonical genes implicated in patterning the apical domain of N. vectensis are largely absent in A. aurita. In contrast, the apical domain of the scleractinian planula shares gene expression pattern with N. vectensis. By comparing the larval single-cell transcriptomes, we revealed the apical organ cell type of Scleractinia and confirmed its homology to Actiniaria. However, Fgfa2, a vital regulator of the regionalization of the N. vectensis apical organ, is absent in the scleractinian genome. Likewise, we found that FoxJ1 and 245 genes associated with cilia are exclusively expressed in the N. vectensis apical domain, which is in line with the presence of ciliary apical tuft in Actiniaria and its absence in Scleractinia and Scyphozoa. Our findings suggest that the common ancestor of cnidarians lacked a ciliary apical tuft, and it could have evolved independently in the Actiniaria.


Assuntos
Antozoários , Cnidários , Anêmonas-do-Mar , Animais , Cnidários/genética , Redes Reguladoras de Genes , Larva/genética , Antozoários/genética , Anêmonas-do-Mar/genética , Neurônios
2.
Mol Ecol Resour ; 22(8): 2956-2966, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35751617

RESUMO

Large and hyperdiverse marine ecosystems pose significant challenges to biodiversity monitoring. While environmental DNA (eDNA) promises to meet many of these challenges, recent studies suggested that sponges, as "natural samplers" of eDNA, could further streamline the workflow for detecting marine vertebrates. However, beyond pilot studies demonstrating the ability of sponges to capture eDNA, little is known about the dynamics of eDNA particles in sponge tissue, and the effectiveness of the latter compared to water samples. Here, we present the results of a controlled aquarium experiment to examine the persistence and detectability of eDNA captured by three encrusting sponge species and compare the sponge's eDNA capturing ability with established water filtration techniques. Our results indicate that sponges and water samples have highly similar detectability for fish of different sizes and abundances, but different sponge species exhibit considerable variance in performance. Interestingly, one sponge appeared to mirror the eDNA degradation profile of water samples, while another sponge retained eDNA throughout the experiment. A third sponge yielded virtually no DNA sequences at all. Overall, our study suggests that some sponges will be suitable as natural samplers, while others will introduce significant problems for laboratory processing. We suggest that an initial optimization phase will be required in any future studies aiming to employ sponges for biodiversity assessment. With time, factoring in technical and natural accessibility, it is expected that specific sponge taxa may become the "chosen" natural samplers in certain habitats and regions.


Assuntos
DNA Ambiental , Animais , Biodiversidade , Código de Barras de DNA Taxonômico/métodos , DNA Ambiental/genética , Ecossistema , Monitoramento Ambiental/métodos , Peixes/genética , Água
3.
Conserv Genet Resour ; 14(2): 167-182, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35035629

RESUMO

The unprecedented threats to coral reef ecosystems from global climate change require an urgent response from the aquarium community, which is becoming an increasingly vital coral conservation resource. Unfortunately, many hermatypic corals in aquaria are not identified to species level, which hinders assessment of their conservation significance. Traditional methods of species identification using morphology can be challenging, especially to non-taxonomists. DNA barcoding is an option for species identification of Scleractinian corals, especially when used in concert with morphology-based assessment. This study uses DNA barcodes to try to identify aquarium specimens of the diverse reef-forming genus Acropora from 127 samples. We identified to our best current knowledge, to species name 44% of the analysed samples and provided provisional identification for 80% of them (101/127, in the form of a list of species names with associate confidence values). We highlighted a sampling bias in public nucleotide sequences repertories (e.g. GenBank) towards more charismatic and more studied species, even inside a well-studied genus like Acropora. In addition, we showed a potential "single observer" effect with over a quarter of the reference sequences used for these identifications coming from the same study. We propose the use of barcoding and query matching as an additional tool for taxonomic experts and general aquarists, as an additional tool to increase their chances of making high confidence species-level identifications. We produce a standardised and easily repeatable methodology to increase the capacity of aquariums and other facilities to assess non-ascribed species, emphasising the value of integrating this approach with morphological identification optimising usage of authoritative identification guides and expert opinion. Supplementary Information: The online version contains supplementary material available at 10.1007/s12686-021-01250-3.

4.
Sci Rep ; 9(1): 12984, 2019 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-31506526

RESUMO

Reef restoration efforts, utilising sexual coral propagation need up-scaling to have ecologically meaningful impact. Post-settlement survival bottlenecks, in part due to competitive benthic algae interactions should be addressed, to improve productivity for these initiatives. Sea urchins are keystone grazers in reef ecosystems, yet feeding behaviour of adults causes physical damage and mortality to developing coral spat. To investigate if microherbivory can be utilised for co-culture, we quantitatively assessed how varying densities of juvenile sea urchins Mespilia globulus (Linnaeus, 1758), reared alongside the coral Acropora millepora (Ehrenberg, 1834) effected survival and growth of coral recruits. Spawning of both species were induced ex situ. A comparison of A. millepora spat reared in three M. globulus densities (low 16.67 m-2, medium 37.50 m-2, high 75.00 m-2) and a non-grazed control indicated coral survival is significantly influenced by grazing activity (p < 0.001) and was highest in the highest density treatment (39.65 ± 10.88%, mean ± s.d). Urchin grazing also significantly (p < 0.001) influenced coral size (compared to non-grazing control), with colonies in the medium and high-densities growing the largest (21.13 ± 1.02 mm & 20.80 ± 0.82, mean ± s.e.m). Increased urchin density did however have a negative influence on urchin growth, a result of limited food availability.


Assuntos
Antozoários/fisiologia , Ecossistema , Dinâmica Populacional , Comportamento Predatório , Ouriços-do-Mar/fisiologia , Sobrevivência , Animais , Técnicas de Cocultura
5.
Ecol Evol ; 7(24): 11066-11078, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29299282

RESUMO

For many corals, the timing of broadcast spawning correlates strongly with a number of environmental signals (seasonal temperature, lunar, and diel cycles). Robust experimental studies examining the role of these putative cues in triggering spawning have been lacking until recently because it has not been possible to predictably induce spawning in fully closed artificial mesocosms. Here, we present a closed system mesocosm aquarium design that utilizes microprocessor technology to accurately replicate environmental conditions, including photoperiod, seasonal insolation, lunar cycles, and seasonal temperature from Singapore and the Great Barrier Reef (GBR), Australia. Coupled with appropriate coral husbandry, these mesocosms were successful in inducing, for the first time, broadcast coral spawning in a fully closed artificial ex situ environment. Four Acropora species (A. hyacinthus, A. tenuis, A. millepora, and A. microclados) from two geographical locations, kept for over 1 year, completed full gametogenic cycles ex situ. The percentage of colonies developing oocytes varied from ~29% for A. hyacinthus to 100% for A. millepora and A. microclados. Within the Singapore mesocosm, A. hyacinthus exhibited the closest synchronization to wild spawning, with all four gravid colonies releasing gametes in the same lunar month as wild predicted dates. Spawning within the GBR mesocosm commenced at the predicted wild spawn date but extended over a period of 3 months. Gamete release in relation to the time postsunset for A. hyacinthus, A. millepora, and A. tenuis was consistent with time windows previously described in the wild. Spawn date in relation to full moon, however, was delayed in all species, possibly as a result of external light pollution. The system described here could broaden the number of institutions on a global scale, that can access material for broadcast coral spawning research, providing opportunities for institutions distant from coral reefs to produce large numbers of coral larvae and juveniles for research purposes and reef restoration efforts.

6.
PLoS One ; 10(3): e0121780, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25794037

RESUMO

Prokaryotic and ciliate communities of healthy and aquarium White Syndrome (WS)-affected coral fragments were screened using denaturing gradient gel electrophoresis (DGGE). A significant difference (R = 0.907, p < 0.001) in 16S rRNA prokaryotic diversity was found between healthy (H), sloughed tissue (ST), WS-affected (WSU) and antibiotic treated (WST) samples. Although 3 Vibrio spp were found in WS-affected samples, two of these species were eliminated following ampicillin treatment, yet lesions continued to advance, suggesting they play a minor or secondary role in the pathogenesis. The third Vibrio sp increased slightly in relative abundance in diseased samples and was abundant in non-diseased samples. Interestingly, a Tenacibaculum sp showed the greatest increase in relative abundance between healthy and WS-affected samples, demonstrating consistently high abundance across all WS-affected and treated samples, suggesting Tenacibaculum sp could be a more likely candidate for pathogenesis in this instance. In contrast to previous studies bacterial abundance did not vary significantly (ANOVA, F2, 6 = 1.000, p = 0.422) between H, ST, WSU or WST. Antimicrobial activity (assessed on Vibrio harveyi cultures) was limited in both H and WSU samples (8.1% ±8.2 and 8.0% ±2.5, respectively) and did not differ significantly (Kruskal-Wallis, χ2 (2) = 3.842, p = 0.146). A Philaster sp, a Cohnilembus sp and a Pseudokeronopsis sp. were present in all WS-affected samples, but not in healthy samples. The exact role of ciliates in WS is yet to be determined, but it is proposed that they are at least responsible for the neat lesion boundary observed in the disease.


Assuntos
Ampicilina/farmacologia , Antozoários/efeitos dos fármacos , Antozoários/microbiologia , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Animais , Archaea/efeitos dos fármacos , Archaea/genética , Bactérias/genética , Cilióforos/genética , Variação Genética , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 16S/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA