Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
MicroPubl Biol ; 20232023.
Artigo em Inglês | MEDLINE | ID: mdl-36685729

RESUMO

TLN-1/talin is a conserved focal adhesion protein that forms part of the linkage between the cytoplasmic tail of integrin and the actin cytoskeleton. In C. elegans , TLN-1 is expressed strongly in striated muscle and the gonadal sheath cells. Here, we report that a CRISPR-generated TLN-1 allele TLN-1(W387A), predicted to affect binding of talin to integrins, results in mild phenotypes, including motility defects and ovulation defects. The arrangement of the actin cytoskeleton in the body wall muscles, spermatheca, and sheath appears identical in wild type and TLN-1(W387A) animals. This analysis suggests that W387 in TLN-1 does not have a major effect on the binding of talin to integrin in vivo .

2.
J Cell Biol ; 222(2)2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36574264

RESUMO

Contractile epithelial tubes are found in various organs, such as lung airways and blood capillaries. Their ability to sense luminal pressure and respond with adequate contractility is essential for their physiology, and its mis-regulation results in diseases such as asthma and hypertension. Here, we describe a mechanoresponsive regulatory pathway downstream of tissue stretching that controls contraction of the C. elegans spermatheca, a tubular structure where fertilization occurs. Using live-imaging, we show that ovulation-induced stretching of spermathecal cells leads to recruitment of the RhoGEF RHGF-1 to stress fibers, which activates RHO-1 and myosin II in a positive feedback loop. Through deletion analysis, we identified the PDZ domain of RHGF-1 as responsible for F-actin binding, and genetic epistasis analysis with the RhoGAP spv-1 demonstrated that tension-dependent recruitment of RHGF-1 to F-actin is required for robust spermathecal contractility. Our study illustrates how mechanosensitive regulators of Rho GTPases provide epithelial tubes the ability to tune their contractility in response to internal pressure.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Feminino , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Actinas/metabolismo , Fibras de Estresse/metabolismo , Contração Muscular , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas rho de Ligação ao GTP/genética , Proteínas rho de Ligação ao GTP/metabolismo , Proteínas Ativadoras de GTPase/metabolismo
3.
Life (Basel) ; 12(11)2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36431013

RESUMO

Protein kinase A (PKA), which regulates a diverse set of biological functions downstream of cyclic AMP (cAMP), is a tetramer consisting of two catalytic subunits (PKA-C) and two regulatory subunits (PKA-R). When cAMP binds the PKA-R subunits, the PKA-C subunits are released and interact with downstream effectors. In Caenorhabditis elegans (C. elegans), PKA-C and PKA-R are encoded by kin-1 and kin-2, respectively. This review focuses on the contributions of work in C. elegans to our understanding of the many roles of PKA, including contractility and oocyte maturation in the reproductive system, lipid metabolism, physiology, mitochondrial function and lifespan, and a wide variety of behaviors. C. elegans provides a powerful genetic platform for understanding how this kinase can regulate an astounding variety of physiological responses.

4.
Curr Biol ; 32(19): R1007-R1009, 2022 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-36220086

RESUMO

How does tissue elongation occur? A recent paper identifies a new mechanism: elongation of the Caenorhabditis elegans hermaphrodite gonad is driven by pressure from proliferating germ cells confined within a tube. The distal tip cell, which caps the tube, remodels the extracellular matrix and adjusts cell-matrix adhesion to guide the way.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Células Germinativas/metabolismo , Gônadas , Morfogênese
5.
Methods Mol Biol ; 2505: 249-262, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35732950

RESUMO

Catharanthus roseus produces medicinal terpenoid indole alkaloids, including the critical anti-cancer compounds vinblastine and vincristine in its leaves. Recently, we developed a highly efficient transient expression method relying on Agrobacterium-mediated transformation of seedlings to facilitate rapid and high-throughput studies on the regulation of terpenoid indole alkaloid biosynthesis in C. roseus . We detail our optimized protocol known as efficient Agrobacterium-mediated seedling infiltration method (EASI), including the development of constructs used in EASI and an example experimental design that includes appropriate controls. We applied our EASI method to rapidly screen and evaluate transcriptional activators and repressors and promoter activity. Our EASI method can be used for promoter transactivation studies or transgene overexpression paired with downstream analyses like quantitative PCR or metabolite analysis. Our protocol takes about 16 days from sowing seeds to obtaining the results of the experiment.


Assuntos
Catharanthus , Alcaloides de Triptamina e Secologanina , Agrobacterium/genética , Agrobacterium/metabolismo , Catharanthus/genética , Catharanthus/metabolismo , Regulação da Expressão Gênica de Plantas , Projetos de Pesquisa , Plântula/genética , Plântula/metabolismo , Fatores de Transcrição/metabolismo
6.
MicroPubl Biol ; 20212021.
Artigo em Inglês | MEDLINE | ID: mdl-34703987

RESUMO

In C. elegans, oocytes are ovulated into the spermatheca, where they are fertilized before being pushed into the uterus. Contraction in the C. elegans spermatheca is driven by circumferential acto-myosin fibers. The C. elegans zyxin homolog, zyx-1, is expressed in the body wall muscle, pharynx and spermatheca. To our surprise, a CRISPR-generated zyx-1 deletion allele results in no overt developmental phenotypes, and the spermathecal actin cytoskeleton appears wild type, however, oocyte transit through the spermatheca is slower than in wild type animals. This suggests ZYX-1/Zyxin may regulate spermathecal contraction magnitude or timing of spermathecal bag contraction and/or spermathecal-uterine valve dilation.

7.
EMBO Rep ; 22(8): e53265, 2021 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-34288349

RESUMO

Cells release extracellular vesicles to remove damaged components and communicate with other cells via packets of proteins, lipids, and RNAs. Neuronal cells in the nematode C. elegans release particularly large extracellular vesicles, known as exophers, to rid themselves of damaged organelles and protein aggregates. Turek et al now demonstrate a new role for these vesicles: Embryos in the uterus stimulate body wall muscle cells to release exophers laden with yolk, which are taken up by oocytes to nourish the next set of embryos (Turek et al, 2021).


Assuntos
Caenorhabditis elegans , Vesículas Extracelulares , Animais , Feminino , Neurônios , Oócitos , Organelas
8.
Plant Commun ; 2(2): 100135, 2021 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-33898975

RESUMO

The recent discovery of the mode of action of the CRISPR/Cas9 system has provided biologists with a useful tool for generating site-specific mutations in genes of interest. In plants, site-targeted mutations are usually obtained by the stable transformation of a Cas9 expression construct into the plant genome. The efficiency of introducing mutations in genes of interest can vary considerably depending on the specific features of the constructs, including the source and nature of the promoters and terminators used for the expression of the Cas9 gene and the guide RNA, and the sequence of the Cas9 nuclease itself. To optimize the efficiency of the Cas9 nuclease in generating mutations in target genes in Arabidopsis thaliana, we investigated several features of its nucleotide and/or amino acid sequence, including the codon usage, the number of nuclear localization signals (NLSs), and the presence or absence of introns. We found that the Cas9 gene codon usage had some effect on its activity and that two NLSs worked better than one. However, the highest efficiency of the constructs was achieved by the addition of 13 introns into the Cas9 coding sequence, which dramatically improved the editing efficiency of the constructs. None of the primary transformants obtained with a Cas9 gene lacking introns displayed a knockout mutant phenotype, whereas between 70% and 100% of the primary transformants generated with the intronized Cas9 gene displayed mutant phenotypes. The intronized Cas9 gene was also found to be effective in other plants such as Nicotiana benthamiana and Catharanthus roseus.


Assuntos
Proteínas de Arabidopsis/análise , Arabidopsis/genética , Proteína 9 Associada à CRISPR/genética , Sistemas CRISPR-Cas , Edição de Genes/métodos , Genoma de Planta , Íntrons , Arabidopsis/metabolismo , Edição de Genes/instrumentação
9.
Cytoskeleton (Hoboken) ; 77(10): 379-398, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32969593

RESUMO

Actomyosin networks are organized in space, direction, size, and connectivity to produce coordinated contractions across cells. We use the C. elegans spermatheca, a tube composed of contractile myoepithelial cells, to study how actomyosin structures are organized. FLN-1/filamin is required for the formation and stabilization of a regular array of parallel, contractile, actomyosin fibers in this tissue. Loss of fln-1 results in the detachment of actin fibers from the basal surface, which then accumulate along the cell junctions and are stabilized by spectrin. In addition, actin and myosin are captured at the nucleus by the linker of nucleoskeleton and cytoskeleton complex (LINC) complex, where they form large foci. Nuclear positioning and morphology, distribution of the endoplasmic reticulum and the mitochondrial network are also disrupted. These results demonstrate that filamin is required to prevent large actin bundle formation and detachment, to prevent excess nuclear localization of actin and myosin, and to ensure correct positioning of organelles.


Assuntos
Actomiosina/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Citoesqueleto/metabolismo , Filaminas/metabolismo , Contração Muscular/fisiologia
10.
Cell Rep ; 32(10): 108125, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32905769

RESUMO

Individually, dysfunction of both the endoplasmic reticulum (ER) and mitochondria has been linked to aging, but how communication between these organelles might be targeted to promote longevity is unclear. Here, we provide evidence that, in Caenorhabditis elegans, inhibition of the conserved unfolded protein response (UPRER) mediator, activating transcription factor (atf)-6, increases lifespan by modulating calcium homeostasis and signaling to mitochondria. Atf-6 loss confers longevity via downregulation of the ER calcium buffer, calreticulin. ER calcium release via the inositol triphosphate receptor (IP3R/itr-1) is required for longevity, while IP3R/itr-1 gain of function is sufficient to extend lifespan. Highlighting coordination between organelles, the mitochondrial calcium import channel mcu-1 is also required for atf-6 longevity. IP3R inhibition leads to impaired mitochondrial bioenergetics and hyperfusion, which is sufficient to suppress long life in atf-6 mutants. This study reveals the importance of organellar calcium handling as a critical output for the UPRER in determining the quality of aging.


Assuntos
Fator 6 Ativador da Transcrição/metabolismo , Caenorhabditis elegans/metabolismo , Cálcio/metabolismo , Retículo Endoplasmático/metabolismo , Mitocôndrias/metabolismo , Animais , Homeostase , Humanos , Longevidade
11.
PLoS Genet ; 16(8): e1008644, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32776941

RESUMO

Correct regulation of cell contractility is critical for the function of many biological systems. The reproductive system of the hermaphroditic nematode C. elegans contains a contractile tube of myoepithelial cells known as the spermatheca, which stores sperm and is the site of oocyte fertilization. Regulated contraction of the spermatheca pushes the embryo into the uterus. Cell contractility in the spermatheca is dependent on actin and myosin and is regulated, in part, by Ca2+ signaling through the phospholipase PLC-1, which mediates Ca2+ release from the endoplasmic reticulum. Here, we describe a novel role for GSA-1/Gαs, and protein kinase A, composed of the catalytic subunit KIN-1/PKA-C and the regulatory subunit KIN-2/PKA-R, in the regulation of Ca2+ release and contractility in the C. elegans spermatheca. Without GSA-1/Gαs or KIN-1/PKA-C, Ca2+ is not released, and oocytes become trapped in the spermatheca. Conversely, when PKA is activated through either a gain of function allele in GSA-1 (GSA-1(GF)) or by depletion of KIN-2/PKA-R, the transit times and total numbers, although not frequencies, of Ca2+ pulses are increased, and Ca2+ propagates across the spermatheca even in the absence of oocyte entry. In the spermathecal-uterine valve, loss of GSA-1/Gαs or KIN-1/PKA-C results in sustained, high levels of Ca2+ and a loss of coordination between the spermathecal bag and sp-ut valve. Additionally, we show that depleting phosphodiesterase PDE-6 levels alters contractility and Ca2+ dynamics in the spermatheca, and that the GPB-1 and GPB-2 Gß subunits play a central role in regulating spermathecal contractility and Ca2+ signaling. This work identifies a signaling network in which Ca2+ and cAMP pathways work together to coordinate spermathecal contractions for successful ovulations.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Sinalização do Cálcio , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Contração Muscular , 3',5'-AMP Cíclico Fosfodiesterases/metabolismo , Animais , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/genética , Células Epiteliais/metabolismo , Células Epiteliais/fisiologia , Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Mutação com Ganho de Função , Células Musculares/metabolismo , Células Musculares/fisiologia , Oócitos/fisiologia
12.
Elife ; 92020 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-32490809

RESUMO

PIEZO1 and PIEZO2 are newly identified mechanosensitive ion channels that exhibit a preference for calcium in response to mechanical stimuli. In this study, we discovered the vital roles of pezo-1, the sole PIEZO ortholog in Caenorhabditiselegans, in regulating reproduction. A number of deletion alleles, as well as a putative gain-of-function mutant, of PEZO-1 caused a severe reduction in brood size. In vivo observations showed that oocytes undergo a variety of transit defects as they enter and exit the spermatheca during ovulation. Post-ovulation oocytes were frequently damaged during spermathecal contraction. However, the calcium signaling was not dramatically changed in the pezo-1 mutants during ovulation. Loss of PEZO-1 also led to an inability of self-sperm to navigate back to the spermatheca properly after being pushed out of the spermatheca during ovulation. These findings suggest that PEZO-1 acts in different reproductive tissues to promote proper ovulation and fertilization in C. elegans.


Assuntos
Caenorhabditis elegans/fisiologia , Sinalização do Cálcio , Canais Iônicos/metabolismo , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Genes Reporter , Canais Iônicos/genética , Masculino , Mutação , Oócitos/fisiologia , Especificidade de Órgãos , Ovulação/fisiologia , Reprodução , Espermatozoides/fisiologia
13.
Mol Biol Cell ; 31(14): 1486-1497, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32374641

RESUMO

Actomyosin-based contractility in smooth muscle and nonmuscle cells is regulated by signaling through the small GTPase Rho and by calcium-activated pathways. We use the myoepithelial cells of the Caenorhabditis elegans spermatheca to study the mechanisms of coordinated myosin activation in vivo. Here, we show that redox signaling modulates RHO-1/Rho activity in this contractile tissue. Exogenously added as well as endogenously generated hydrogen peroxide decreases spermathecal contractility by inhibition of RHO-1, which depends on a conserved cysteine in its nucleotide binding site (C20). Further, we identify an endogenous gradient of H2O2 across the spermathecal tissue, which depends on the activity of cytosolic superoxide dismutase, SOD-1. Collectively, we show that SOD-1-mediated H2O2 production regulates the redox environment and fine tunes Rho activity across the spermatheca through oxidation of RHO-1 C20.


Assuntos
Células Epiteliais/metabolismo , Contração Muscular/fisiologia , Proteínas rho de Ligação ao GTP/metabolismo , Citoesqueleto de Actina/metabolismo , Actomiosina/metabolismo , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Cálcio/metabolismo , Peróxido de Hidrogênio/metabolismo , Células Musculares/metabolismo , Músculo Liso/metabolismo , Músculo Liso/fisiologia , Oxirredução , Transdução de Sinais , Superóxido Dismutase/metabolismo , Quinases Associadas a rho/metabolismo
14.
J Cell Biol ; 218(11): 3795-3811, 2019 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-31541016

RESUMO

Fam20C is a secreted protein kinase mutated in Raine syndrome, a human skeletal disorder. In vertebrates, bone and enamel proteins are major Fam20C substrates. However, Fam20 kinases are conserved in invertebrates lacking bone and enamel, suggesting other ancestral functions. We show that FAMK-1, the Caenorhabditis elegans Fam20C orthologue, contributes to fertility, embryogenesis, and development. These functions are not fulfilled when FAMK-1 is retained in the early secretory pathway. During embryogenesis, FAMK-1 maintains intercellular partitions and prevents multinucleation; notably, temperature elevation or lowering cortical stiffness reduces requirement for FAMK-1 in these contexts. FAMK-1 is expressed in multiple adult tissues that undergo repeated mechanical strain, and selective expression in the spermatheca restores fertility. Informatic, biochemical, and functional analysis implicate lectins as FAMK-1 substrates. These findings suggest that FAMK-1 phosphorylation of substrates, including lectins, in the late secretory pathway is important in embryonic and tissue contexts where cells are subjected to mechanical strain.


Assuntos
Caenorhabditis elegans/enzimologia , Caseína Quinase I/metabolismo , Animais , Caenorhabditis elegans/metabolismo , Caseína Quinase I/genética , Células HEK293 , Humanos
15.
Front Plant Sci ; 10: 755, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31263474

RESUMO

The Catharanthus roseus plant is the exclusive source of the valuable anticancer terpenoid indole alkaloids, vinblastine (VB) and vincristine (VC). The recent availability of transcriptome and genome resources for C. roseus necessitates a fast and reliable method for studying gene function. In this study, we developed an Agrobacterium-mediated transient expression method to enable the functional study of genes rapidly in planta, conserving the compartmentalization observed in the VB and VC pathway. We focused on (1) improving the transformation method (syringe versus vacuum agroinfiltration) and cultivation conditions (seedling age, Agrobacterium density, and time point of maximum transgene expression), (2) improving transformation efficiency through the constitutive expression of the virulence genes and suppressing RNA silencing mechanisms, and (3) improving the vector design by incorporating introns, quantitative and qualitative reporter genes (luciferase and GUS genes), and accounting for transformation heterogeneity across the tissue using an internal control. Of all the parameters tested, vacuum infiltration of young seedlings (10-day-old, harvested 3 days post-infection) resulted in the strongest increase in transgene expression, at 18 - 57 fold higher than either vacuum or syringe infiltration of other seedling ages. Endowing the A. tumefaciens strain with the mutated VirGN54D or silencing suppressors within the same plasmid as the reporter gene further increased expression by 2 - 10 fold. For accurate measurement of promoter transactivation or activity, we included an internal control to normalize the differences in plant mass and transformation efficiency. Including the normalization gene (Renilla luciferase) on the same plasmid as the reporter gene (firefly luciferase) consistently yielded a high signal and a high correlation between RLUC and FLUC. As proof of principle, we applied this approach to investigate the regulation of the CroSTR1 promoter with the well-known activator ORCA3 and repressor ZCT1. Our method demonstrated the quantitative assessment of both the activation and repression of promoter activity in C. roseus. Our efficient Agrobacterium-mediated seedling infiltration (EASI) protocol allows highly efficient, reproducible, and homogenous transformation of C. roseus cotyledons and provides a timely tool for the community to rapidly assess the function of genes in planta, particularly for investigating how transcription factors regulate terpenoid indole alkaloid biosynthesis.

16.
J Dev Biol ; 7(1)2019 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-30897735

RESUMO

The reproductive system of the hermaphroditic nematode C. elegans consists of a series of contractile cell types-including the gonadal sheath cells, the spermathecal cells and the spermatheca⁻uterine valve-that contract in a coordinated manner to regulate oocyte entry and exit of the fertilized embryo into the uterus. Contraction is driven by acto-myosin contraction and relies on the development and maintenance of specialized acto-myosin networks in each cell type. Study of this system has revealed insights into the regulation of acto-myosin network assembly and contractility in vivo.

17.
Curr Biol ; 29(5): R150-R152, 2019 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-30836081

RESUMO

Interactions between the distal tip cell and germline stem cells maintain a proliferative pool of mitotic cells in the Caenorhabditis elegans gonad. A new study shows that escaped germline stem cells induce nearby muscle cells to reach out and wrap around them, forming an ectopic niche similar to the native gonadal germ cell niche.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Células Germinativas , Gônadas , Células-Tronco
18.
Mol Biol Cell ; 30(7): 907-922, 2019 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-30726159

RESUMO

Contractility of the nonmuscle and smooth muscle cells that comprise biological tubing is regulated by the Rho-ROCK (Rho-associated protein kinase) and calcium signaling pathways. Although many molecular details about these signaling pathways are known, less is known about how they are coordinated spatiotemporally in biological tubes. The spermatheca of the Caenorhabditis elegans reproductive system enables study of the signaling pathways regulating actomyosin contractility in live adult animals. The RhoGAP (GTPase--activating protein toward Rho family small GTPases) SPV-1 was previously identified as a negative regulator of RHO-1/Rho and spermathecal contractility. Here, we uncover a role for SPV-1 as a key regulator of calcium signaling. spv-1 mutants expressing the calcium indicator GCaMP in the spermatheca exhibit premature calcium release, elevated calcium levels, and disrupted spatial regulation of calcium signaling during spermathecal contraction. Although RHO-1 is required for spermathecal contractility, RHO-1 does not play a significant role in regulating calcium. In contrast, activation of CDC-42 recapitulates many aspects of spv-1 mutant calcium signaling. Depletion of cdc-42 by RNA interference does not suppress the premature or elevated calcium signal seen in spv-1 mutants, suggesting other targets remain to be identified. Our results suggest that SPV-1 works through both the Rho-ROCK and calcium signaling pathways to coordinate cellular contractility.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/fisiologia , Sinalização do Cálcio/fisiologia , Proteínas Ativadoras de GTPase/metabolismo , Proteínas Ativadoras de GTPase/fisiologia , Actomiosina/metabolismo , Animais , Caenorhabditis elegans/metabolismo , Cálcio/metabolismo , Proteínas de Ciclo Celular/metabolismo , Embrião não Mamífero/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Contração Muscular/fisiologia , Transdução de Sinais , Proteínas rho de Ligação ao GTP/metabolismo , Quinases Associadas a rho/metabolismo
19.
Plant Direct ; 3(12): e00193, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31909362

RESUMO

Cys2/His2-type (C2H2) zinc finger proteins, such as ZCT1, are an important class of transcription factors involved in growth, development, and stress responses in plants. In the medicinal plant Catharanthus roseus, the zinc finger Catharanthus transcription factor (ZCT) family represses monoterpenoid indole alkaloid (MIA) biosynthetic gene expression. Here, we report the analysis of the ZCT1 promoter, which contains several hormone-responsive elements. ZCT1 is responsive to not only jasmonate, as was previously known, but is also induced by the synthetic auxin, 1-naphthalene acetic acid (1-NAA). Through promoter deletion analysis, we show that an activation sequence-1-like (as-1-like)-motif and other motifs contribute significantly to ZCT1 expression in seedlings. We also show that the activator ORCA3 does not transactivate the expression of ZCT1 in seedlings, but ZCT1 represses its own promoter, suggesting a feedback mechanism by which the expression of ZCT1 can be limited.

20.
Mol Biol Cell ; 29(20): 2433-2449, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30091661

RESUMO

Disruption to the contractility of cells, including smooth muscle cells of the cardiovascular system and myoepithelial cells of the glandular epithelium, contributes to the pathophysiology of contractile tissue diseases, including asthma, hypertension, and primary Sjögren's syndrome. Cell contractility is determined by myosin activity and actomyosin network organization and is mediated by hundreds of protein-protein interactions, many directly involving actin. Here we use a candidate RNA interference screen of more than 100 Caenorhabditis elegans genes with predicted actin-binding and regulatory domains to identify genes that contribute to the contractility of the somatic gonad. We identify the spectrin cytoskeleton composed of SPC-1/α-spectrin, UNC-70/ß-spectrin, and SMA-1/ß heavy-spectrin as required for contractility and actin organization in the myoepithelial cells of the C. elegans spermatheca. We use imaging of fixed and live animals as well as tissue- and developmental-stage-specific disruption of the spectrin cytoskeleton to show that spectrin regulates the production of prominent central actin bundles and is required for maintenance of central actin bundles throughout successive rounds of stretch and contraction. We conclude that the spectrin cytoskeleton contributes to spermathecal contractility by promoting maintenance of the robust actomyosin bundles that drive contraction.


Assuntos
Actinas/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/citologia , Espectrina/metabolismo , Espermatozoides/metabolismo , Actomiosina/metabolismo , Animais , Testes Genéticos , Masculino , Ovulação , Espermatozoides/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA