Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Conserv Physiol ; 8(1): coaa005, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32099655

RESUMO

Increasingly, cold-water pollution (CWP) is being recognised as a significant threat to aquatic communities downstream of large, bottom-release dams. Cold water releases typically occur during summer when storage dams release unseasonably cold and anoxic hypolimnetic waters, which can decrease the temperature of downstream waters by up to 16°C. Depending on the release duration, these hypothermic conditions can persist for many months. The capacity of ectothermic species to tolerate or rapidly adjust to acute temperature changes may determine the nature and magnitude of the impact of CWP on affected species. This study assessed the impacts of an acute reduction in water temperature on the physiological function and locomotor performance of juvenile silver perch (Bidyanus bidyanus) and examined their capacity to thermally compensate for the depressive effects of low temperatures via phenotypic plasticity. Locomotor performance (Ucrit and Usprint) and energetic costs (routine and maximum metabolic rate) were measured at multiple points over a 10-week period following an abrupt 10°C drop in water temperature. We also measured the thermal sensitivity of metabolic enzymes from muscle samples taken from fish following the exposure period. Cold exposure had significant depressive effects on physiological traits, resulting in decreases in performance between 10% and 55%. Although there was partial acclimation of Ucrit (~35% increase in performance) and complete compensation of metabolic rate, this occurred late in the exposure period, meaning silver perch were unable to rapidly compensate for the depressive effects of thermal pollution. The results of this study have substantial implications for the management of cold water releases from large-scale dams and the conservation of native freshwater fish species, as this form of thermal pollution can act as a barrier to fish movement, cause reduced recruitment, ecological community shifts and disruptions to timing and success of reproduction.

2.
J Fish Biol ; 92(1): 237-247, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29193071

RESUMO

This study compared the critical swimming speed (Ucrit ) and endurance performance of three Australian freshwater fish species in different swim-test apparatus. Estimates of Ucrit measured in a large recirculating flume were greater for all species compared with estimates from a smaller model of the same recirculating flume. Large differences were also observed for estimates of endurance swimming performance between these recirculating flumes and a free-surface swim tunnel. Differences in estimates of performance may be attributable to variation in flow conditions within different types of swim chambers. Variation in estimates of swimming performance between different types of flumes complicates the application of laboratory-based measures to the design of fish passage infrastructure.


Assuntos
Peixes/fisiologia , Natação , Animais , Austrália , Conservação dos Recursos Naturais , Hidrodinâmica , Movimentos da Água
3.
Artigo em Inglês | MEDLINE | ID: mdl-25868436

RESUMO

While there is a considerable body of work describing osmoregulation by elasmobranchs in brackish and saltwater, far fewer studies have investigated osmoregulation in hypersaline waters. We examined osmo- and ionoregulatory function and plasticity in juvenile brown-banded bamboo sharks, Chiloscyllium punctatum, exposed to three experimental salinities (25, 34 and 40‰) for two weeks. C. punctatum inhabits sheltered coastal areas and bays which can naturally become hypersaline as a consequence of evaporation of water but can also become hyposaline during flood events. We hypothesised that C. punctatum would demonstrate a phenotypically plastic osmoregulatory physiology. Plasma osmolality, urea, Na(+) and Cl(-) levels increased significantly with increasing environmental salinity. Rectal gland and branchial sodium-potassium ATPase (NKA) activities were unaffected by salinity. Using immunohistochemistry and Western Blotting we found evidence for the presence of the key ion-regulatory proteins vacuolar H(+)-ATPase (VHA), pendrin (Cl(-)/HCO3(-) co-transporter) and the Na(+)-H(+) exchanger isoform 3 (NHE3) in discrete cells within the branchial epithelia. These results indicate that C. punctatum is a partially euryhaline elasmobranch able to maintain osmo- and ionoregulatory function between environmental salinities of 25‰ and 40‰. As suggested for other elasmobranchs, the gills of C. punctatum likely play a limited role in maintaining Na(+) homeostasis over the salinity range studied, but may play an important role in acid-base balance.


Assuntos
Osmorregulação , Tubarões/fisiologia , Aclimatação , Equilíbrio Ácido-Base , Animais , Epitélio/metabolismo , Proteínas de Peixes/metabolismo , Brânquias/metabolismo , Homeostase , Águas Salinas , Salinidade , Glândula de Sal/metabolismo , Água do Mar , Trocador 3 de Sódio-Hidrogênio , Trocadores de Sódio-Hidrogênio/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo
4.
J Morphol ; 274(2): 165-74, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22996762

RESUMO

Animals that undergo prolonged dormancy experience minimal muscle disuse atrophy (MDA) compared to animals subjected to artificial immobilisation over shorter timeframes. An association between oxidative stress and MDA suggests that metabolic depression presumably affords dormant animals some protection against muscle disuse. Because aerobic metabolism is temperature sensitive, we proposed that MDA in dormant (aestivating) ectotherms would be enhanced at elevated temperatures. In the green-striped burrowing frog, Cyclorana alboguttata, the thermal sensitivity of skeletal muscle metabolic rate is muscle-specific. We proposed that the degree of atrophy experienced during aestivation would correlate with the thermal sensitivity of muscle metabolic rate such that muscles with a relatively high metabolic rate at high temperatures would experience more disuse atrophy. To test this hypothesis, we examined the effect of temperature and aestivation on the extent of MDA in two functionally different muscles: the M. gastrocnemius (jumping muscle) and M. iliofibularis (non-jumping muscle), in C. alboguttata aestivating at 24 or 30 °C for 6 months. We compared a range of morphological parameters from muscle cross-sections stained with succinic dehydrogenase to show that muscle-specific patterns of disuse atrophy were consistent with the relative rates of oxygen consumption of those muscle types. However, despite muscle-specific differences in thermal sensitivity of metabolic rate, aestivation temperature did not influence the extent of atrophy in either muscle. Our results suggest that the muscles of frogs aestivating at high temperatures are defended against additional atrophy ensuring protection of muscle function during long periods of immobilisation.


Assuntos
Anuros/fisiologia , Temperatura Alta , Músculo Esquelético/efeitos da radiação , Transtornos Musculares Atróficos/patologia , Transtornos Musculares Atróficos/fisiopatologia , Análise de Variância , Animais , Estivação/fisiologia , Imobilização/fisiologia , Músculo Esquelético/anatomia & histologia , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Tamanho do Órgão , Estresse Oxidativo/fisiologia , Consumo de Oxigênio , Distribuição Aleatória , Temperatura
5.
J Comp Physiol B ; 179(7): 857-66, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19466430

RESUMO

Changes in membrane lipid composition (membrane remodelling) have been associated with metabolic depression in some aestivating snails but has not been studied in aestivating frogs. This study examined the membrane phospholipid composition of two Australian aestivating frog species Cyclorana alboguttata and Cyclorana australis. The results showed no major membrane remodelling of tissue in either frog species, or in mitochondria of C. alboguttata due to aestivation. Mitochondrial membrane remodelling was not investigated in C. australis. Where investigated in C. alboguttata, total protein and phospholipid content, and citrate synthase (CS) and cytochrome c oxidase (CCO) activities in tissues and mitochondria mostly did not change with aestivation in liver. In skeletal muscle, however, CS and CCO activities, mitochondrial and tissue phospholipids, and mitochondrial protein decreased with aestivation. These decreases in muscle indicate that skeletal muscle mitochondrial content may decrease during aestivation. Na(+)K(+)ATPase activity of both frog species showed no effect of aestivation. In C. alboguttata different fat diets had a major effect on both tissue and mitochondrial phospholipid composition indicating an ability to remodel membrane composition that is not utilised in aestivation. Therefore, changes in lipid composition associated with some aestivating snails do not occur during aestivation in these Australian frogs.


Assuntos
Anuros/fisiologia , Metabolismo Energético/fisiologia , Estivação/fisiologia , Ácidos Graxos/análise , Fosfolipídeos/química , Análise de Variância , Animais , Tamanho Corporal , Peso Corporal , Baratas/química , Gorduras na Dieta/administração & dosagem , Ácidos Graxos Monoinsaturados/administração & dosagem , Ácidos Graxos Monoinsaturados/análise , Ácidos Graxos Ômega-6/administração & dosagem , Ácidos Graxos Ômega-6/análise , Gryllidae/química , Rim/química , Rim/enzimologia , Fígado/química , Fígado/enzimologia , Fígado/crescimento & desenvolvimento , Mitocôndrias Hepáticas/química , Mitocôndrias Hepáticas/enzimologia , Mitocôndrias Musculares/química , Mitocôndrias Musculares/enzimologia , Músculo Esquelético/química , Músculo Esquelético/enzimologia , Northern Territory , Tamanho do Órgão , Queensland , Distribuição Aleatória , Estações do Ano
6.
J Fish Biol ; 74(1): 77-89, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20735525

RESUMO

Muscle morphology was investigated in newly hatched barramundi Lates calcarifer larvae incubated at set temperatures (26, 29 and 31 degrees C) prior to hatching. Three days after hatching (the start of exogenous feeding), larvae from the 26 and 31 degrees C treatments were each divided into two groups and reared at that temperature or transferred over the period of several hours to 29 degrees C (control temperature). Incubation temperature significantly affected muscle cellularity in the developing embryo, with larvae incubated at 26 degrees C (mean +/-s.e. 223.3 +/- 7.9) having on average 14.4% more inner muscle fibres than those incubated at 31 degrees C (195.2 +/- 8.8) and 4.8% more than those incubated at 29 degrees C (213.5 +/- 4.7). Conversely, inner muscle fibre cross-sectional area significantly increased at the warm incubation temperature in L. calcarifer, so that the total cross-sectional muscle area was not different between treatment groups. The total cross-sectional area of superficial muscle fibres and the proportion of superficial to total fibre cross-sectional area in just hatched L. calcarifer were also affected by incubation temperature, with incubation at the cool temperature (26 degrees C) increasing both the total cross-sectional area and proportion of superficial muscle fibres. By 9 days post-hatch, the aforementioned differences were no longer significant. Similarly, there was no difference in total superficial fibre cross-sectional area between any treatment groups of L. calcarifer, whereas incubation temperature still significantly affected the proportion of superficial to total muscle fibre cross-sectional area. Larvae hatched and grown at 31 degrees C had a significantly reduced percentage of superficial muscle cross-sectional area (mean +/-s.e. 5.11 +/- 0.66%) compared with those incubated and grown at 29 degrees C (8.04 +/- 0.77%) and 26 degrees C (9.32 +/- 0.56%) and those incubated at 26 degrees C and transferred to 29 degrees C (7.52 +/- 0.53%), and incubated at 31 degrees C and transferred to 29 degrees C (6.28 +/- 0.69%). These results indicate that changes in muscle cellularity induced by raising or lowering the incubation temperature of L. calcarifer display varying degrees of persistence over developmental time. The significance of these findings to the culture of L. calcarifer is discussed.


Assuntos
Desenvolvimento Muscular , Músculos/fisiologia , Perciformes/crescimento & desenvolvimento , Animais , Tamanho Corporal , Larva/crescimento & desenvolvimento , Larva/fisiologia , Perciformes/fisiologia , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA