Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(1): e0297345, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38295117

RESUMO

Wildlife conservation strategies focused on one season or population segment may fail to adequately protect populations, especially when a species' habitat preferences vary among seasons, age-classes, geographic regions, or other factors. Conservation of golden eagles (Aquila chrysaetos) is an example of such a complex scenario, in which the distribution, habitat use, and migratory strategies of this species of conservation concern vary by age-class, reproductive status, region, and season. Nonetheless, research aimed at mapping priority use areas to inform management of golden eagles in western North America has typically focused on territory-holding adults during the breeding period, largely to the exclusion of other seasons and life-history groups. To support population-wide conservation planning across the full annual cycle for golden eagles, we developed a distribution model for individuals in a season not typically evaluated-winter-and in an area of the interior western U.S. that is a high priority for conservation of the species. We used a large GPS-telemetry dataset and library of environmental variables to develop a machine-learning model to predict spatial variation in the relative intensity of use by golden eagles during winter in Wyoming, USA, and surrounding ecoregions. Based on a rigorous series of evaluations including cross-validation, withheld and independent data, our winter-season model accurately predicted spatial variation in intensity of use by multiple age- and life-history groups of eagles not associated with nesting territories (i.e., all age classes of long-distance migrants, and resident non-adults and adult "floaters", and movements of adult territory holders and their offspring outside their breeding territories). Important predictors in the model were wind and uplift (40.2% contribution), vegetation and landcover (27.9%), topography (14%), climate and weather (9.4%), and ecoregion (8.7%). Predicted areas of high-use winter habitat had relatively low spatial overlap with nesting habitat, suggesting a conservation strategy targeting high-use areas for one season would capture as much as half and as little as one quarter of high-use areas for the other season. The majority of predicted high-use habitat (top 10% quantile) occurred on private lands (55%); lands managed by states and the Bureau of Land Management (BLM) had a lower amount (33%), but higher concentration of high-use habitat than expected for their area (1.5-1.6x). These results will enable those involved in conservation and management of golden eagles in our study region to incorporate spatial prioritization of wintering habitat into their existing regulatory processes, land-use planning tasks, and conservation actions.


Assuntos
Águias , Propilaminas , Sulfetos , Humanos , Animais , Estações do Ano , Conservação dos Recursos Naturais/métodos , América do Norte
2.
Science ; 375(6582): 779-782, 2022 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-35175813

RESUMO

Lead poisoning occurs worldwide in populations of predatory birds, but exposure rates and population impacts are known only from regional studies. We evaluated the lead exposure of 1210 bald and golden eagles from 38 US states across North America, including 620 live eagles. We detected unexpectedly high frequencies of lead poisoning of eagles, both chronic (46 to 47% of bald and golden eagles, as measured in bone) and acute (27 to 33% of bald eagles and 7 to 35% of golden eagles, as measured in liver, blood, and feathers). Frequency of lead poisoning was influenced by age and, for bald eagles, by region and season. Continent-wide demographic modeling suggests that poisoning at this level suppresses population growth rates for bald eagles by 3.8% (95% confidence interval: 2.5%, 5.4%) and for golden eagles by 0.8% (0.7%, 0.9%). Lead poisoning is an underappreciated but important constraint on continent-wide populations of these iconic protected species.

3.
Ecol Appl ; 32(3): e2544, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35080801

RESUMO

In the United States, the Bald and Golden Eagle Protection Act prohibits take of golden eagles (Aquila chrysaetos) unless authorized by permit, and stipulates that all permitted take must be sustainable. Golden eagles are unintentionally killed in conjunction with many lawful activities (e.g., electrocution on power poles, collision with wind turbines). Managers who issue permits for incidental take of golden eagles must determine allowable take levels and manage permitted take accordingly. To aid managers in making these decisions in the western United States, we used an integrated population model to obtain estimates of golden eagle vital rates and population size, and then used those estimates in a prescribed take level (PTL) model to estimate the allowable take level. Estimated mean annual survival rates for golden eagles ranged from 0.70 (95% credible interval = 0.66-0.74) for first-year birds to 0.90 (0.88-0.91) for adults. Models suggested a high proportion of adult female golden eagles attempted to breed and breeding pairs fledged a mean of 0.53 (0.39-0.72) young annually. Population size in the coterminous western United States has averaged ~31,800 individuals for several decades, with λ = 1.0 (0.96-1.05). The PTL model estimated a median allowable take limit of ~2227 (708-4182) individuals annually given a management objective of maintaining a stable population. We estimate that take averaged 2572 out of 4373 (59%) deaths annually, based on a representative sample of transmitter-tagged golden eagles. For the subset of golden eagles that were recovered and a cause of death determined, anthropogenic mortality accounted for an average of 74% of deaths after their first year; leading forms of take over all age classes were shooting (~670 per year), collisions (~611), electrocutions (~506), and poisoning (~427). Although observed take overlapped the credible interval of our allowable take estimate and the population overall has been stable, our findings indicate that additional take, unless mitigated for, may not be sustainable. Our analysis demonstrates the utility of the joint application of integrated population and prescribed take level models to management of incidental take of a protected species.


Assuntos
Águias , Fatores Etários , Animais , Causas de Morte , Feminino , Humanos , Propilaminas , Sulfetos , Taxa de Sobrevida , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA