Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
CBE Life Sci Educ ; 19(1): ar4, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32004100

RESUMO

Recent studies demonstrate that significant learning gains can be achieved when instructors take intentional steps to address the affective components of learning. While such efforts enhance the outcomes of all students, they are particularly beneficial for students from underrepresented groups and can reduce performance gaps. In the present study, we examined whether intentional efforts to address the affective domain of learning (through growth mindset messaging) can synergize with best practices for addressing the cognitive domain (via active-learning strategies) to enhance academic outcomes in biology courses. We compared the impact of this two-pronged approach (known as dual domain pedagogy, or DDP) with that of two other pedagogies (lecture only or active learning only). Our results demonstrate that DDP is a powerful tool for narrowing performance gaps. DDP, but not active learning, eliminated the performance gap observed between Black and white students in response to lecture. While a significant gap between white and Latin@ students was observed in response to active learning (but not lecture), this gap was reduced by DDP. These findings demonstrate that DDP is an effective approach for promoting a more equitable classroom and can foster learning outcomes that supersede those conferred by active learning alone.


Assuntos
Biologia , Avaliação Educacional , Aprendizagem Baseada em Problemas , Biologia/educação , Humanos , Estudantes
2.
Artigo em Inglês | MEDLINE | ID: mdl-28861134

RESUMO

Undergraduate students learn about mammalian cell culture applications in introductory biology courses. However, laboratory modules are rarely designed to provide hands-on experience with mammalian cells or teach cell culture techniques, such as trypsinization and cell counting. Students are more likely to learn about cell culture using bacteria or yeast, as they are typically easier to grow, culture, and manipulate given the equipment, tools, and environment of most undergraduate biology laboratories. In contrast, the utilization of mammalian cells requires a dedicated biological safety cabinet and rigorous antiseptic techniques. For this reason, we have devised a laboratory module and method herein that familiarizes students with common cell culture procedures, without the use of a sterile hood or large cell culture facility. Students design and perform a time-efficient inquiry-based cell viability experiment using HeLa cells and tools that are readily available in an undergraduate biology laboratory. Students will become familiar with common techniques such as trypsinizing cells, cell counting with a hemocytometer, performing serial dilutions, and determining cell viability using trypan blue dye. Additionally, students will work with graphing software to analyze their data and think critically about the mechanism of death on a cellular level. Two different adaptations of this inquiry-based lab are presented-one for non-biology majors and one for biology majors. Overall, these laboratories aim to expose students to mammalian cell culture and basic techniques and help them to conceptualize their application in scientific research.

3.
Biochim Biophys Acta ; 1576(1-2): 30-8, 2002 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-12031481

RESUMO

The DNA-binding protein GerE acts as both a repressor and an activator of transcription of genes transcribed by sigma(K)-RNA polymerase (RNA-P) during the later stages of endospore formation in Bacillus subtilis. GerE represses transcription from the sigK promoter, and activates transcription from other promoters, including cotC and cotX. Two different regions of GerE (AR1 and AR2) are required for activation of cotC and cotX, respectively. We used a genetic screen to seek mutations that would define additional regions of GerE required for promoter activation. We found that a substitution of proline for leucine at position 12 of GerE (L12P) decreased cotC promoter activity but did not interfere with GerE-dependent repression of the sigK promoter or with activation of the cotX promoter in vivo. We also found that the L12P substitution had no effect on binding to cotC in vitro. However, the L12P-substituted GerE failed to stimulate cotC transcription in vitro, whereas it stimulated transcription from PcotX. The crystal structure of GerE suggests that L12 is not exposed on the surface of the molecule. Therefore, we propose that the L12P substitution reduces the flexibility of the N-terminal arm, preventing an interaction of AR1 with RNA-P that is essential for activation of the cotC promoter.


Assuntos
Bacillus subtilis/genética , Proteínas de Bactérias/genética , Fator sigma , Alelos , Substituição de Aminoácidos , Pegada de DNA , Dimerização , Modelos Moleculares , Mutação , Regiões Promotoras Genéticas , Proteínas Repressoras/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica
4.
J Bacteriol ; 184(1): 241-9, 2002 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-11741866

RESUMO

GerE from Bacillus subtilis is the smallest member of the LuxR-FixJ family of transcription activators. Its 74-amino-acid sequence is similar over its entire length to the DNA binding domain of this protein family, including a putative helix-turn-helix (HTH) motif. In this report, we sought to define regions of GerE involved in promoter activation. We examined the effects of single alanine substitutions at 19 positions that were predicted by the crystal structure of GerE to be located on its surface. A single substitution of alanine for the phenylalanine at position 6 of GerE (F6A) resulted in decreased transcription in vivo and in vitro from the GerE-dependent cotC promoter. However, the F6A substitution had little effect on transcription from the GerE-dependent cotX promoter. In contrast, a single alanine substitution for the leucine at position 67 (L67A) reduced transcription from the cotX promoter, but not from the cotC promoter. The results of DNase I protection assays and in vitro transcription reactions lead us to suggest that the F6A and L67A substitutions define two regions of GerE, activation region 1 (AR1) and AR2, that are required for activation of the cotC and cotX promoters, respectively. A comparison of our results with those from studies of MalT and BvgA indicated that other members of the LuxR-FixJ family may use more than one surface to interact with RNA polymerase during promoter activation.


Assuntos
Bacillus subtilis/genética , Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regiões Promotoras Genéticas , Fator sigma , Fatores de Transcrição/metabolismo , Alanina/genética , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese , Ligação Proteica , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA