Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Arch Virol ; 166(1): 125-138, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33111162

RESUMO

In a comparative analysis of genome sequences from isolates of the baculovirus Chrysodeixis includens nucleopolyhedrovirus (ChinNPV) from Brazil and Guatemala, we identified a subset of isolates possessing chimeric genomes. We identified six distinct phylogenetically incongruous regions (PIRs) dispersed in the genomes, of between 279 and 3345 bp in length. The individual PIRs possessed high sequence similarity among the affected ChinNPV isolates but varied in coverage in some instances. The donor for four of the PIRs implicated in horizontal gene transfer (HGT) was identified as Trichoplusia ni single nucleopolyhedrovirus (TnSNPV), an alphabaculovirus closely related to ChinNPV, or another unknown but closely related virus. BLAST searches of the other two PIRs returned only ChinNPV sequences, but HGT from an unknown donor baculovirus cannot be excluded. Although Chrysodeixis includens and Trichoplusia ni are frequently co-collected from soybean fields in Brazil, pathogenicity data suggest that natural coinfection of C. includens larvae with ChinNPV and TnSNPV is probably uncommon. Additionally, since the chimeric ChinNPV genomes with tracts of TnSNPV sequence were restricted to a single monophyletic lineage of closely related isolates, a model of progressive restoration of the native DNA sequence by recombination with ChinNPV possessing a fully or partially non-chimeric genome is reasonable. However, multiple independent HGT from TnSNPV to ChinNPV during the evolution of these isolates cannot be excluded. Mortality data suggest that the ChinNPV isolates with chimeric genomes are not significantly different in pathogenicity towards C. includens when compared to most other ChinNPV isolates. Exclusion of the PIRs prior to phylogenetic analysis had a large impact on the topology of part of the maximum-likelihood tree, revealing a homogenous clade of three isolates (IB, IC and ID) from Paraná state in Brazil collected in 2006, together with an isolate from Guatemala collected in 1972 (IA), comprising the lineage uniquely affected by HGT from TnSNPV. The other 10 Brazilian ChinNPV isolates from Paraná, Mato Grosso, and Minas Gerais states showed higher variability, where only three isolates from Paraná state formed a monophyletic group correlating with geographical origin.


Assuntos
Genoma Viral/genética , Nucleopoliedrovírus/genética , Virulência/genética , Animais , Baculoviridae/genética , Sequência de Bases , Brasil , Evolução Molecular , Larva/virologia , Mariposas/virologia , Controle Biológico de Vetores , Filogenia , Glycine max/virologia
2.
Microbiol Resour Announc ; 9(8)2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-32079633

RESUMO

We report the complete genomic sequences of seven viral isolates from the soybean looper (Chrysodeixis includens) from midwestern and southeastern Brazil. The genomes range from 138,760 to 139,637 bp in length with a G+C content of 39.2% and 140 open reading frames (ORFs).

3.
J Invertebr Pathol ; 148: 152-161, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28669710

RESUMO

Condylorrhiza vestigialis (Lepidoptera: Cambridae), commonly known as the Brazilian poplar moth or Alamo moth, is a serious defoliating pest of poplar, a crop of great economic importance for the production of wood, fiber, biofuel and other biomaterials as well as its significant ecological and environmental value. The complete genome sequence of a new alphabaculovirus isolated from C. vestigialis was determined and analyzed. Condylorrhiza vestigialis nucleopolyhedrovirus (CoveNPV) has a circular double-stranded DNA genome of 125,767bp with a GC content of 42.9%. One hundred and thirty-eight putative open reading frames were identified and annotated in the CoveNPV genome, including 38 core genes and 9 bros. Four homologous regions (hrs), a feature common to most baculoviruses, and 19 perfect and imperfect direct repeats (drs) were found. Phylogenetic analysis confirmed that CoveNPV is a Group I Alphabaculovirus and is most closely related to Anticarsia gemmatalis multiple nucleopolyhedrovirus (AgMNPV) and Choristoneura fumiferana DEF multiple nucleopolyhedrovirus CfDEFMNPV. The gp37 gene was not detected in the CoveNPV genome, although this gene is found in many NPVs. Two other common NPV genes, chitinase (v-chiA) and cathepsin (v-cath), that are responsible for host insect liquefaction and melanization, were also absent, where phylogenetic analysis suggests that the loss these genes occurred in the common ancestor of AgMNPV, CfDEFMNPV and CoveNPV, with subsequent reacquisition of these genes by CfDEFMNPV. The molecular biology and genetics of CoveNPV was formerly very little known and our expectation is that the findings presented here should accelerate research on this baculovirus, which will facilitate the use of CoveNPV in integrated pest management programs in Poplar crops.


Assuntos
Baculoviridae/genética , Genes Virais/genética , Mariposas/virologia , Controle Biológico de Vetores/métodos , Animais , Brasil , Populus/microbiologia
4.
Genome Announc ; 4(6)2016 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-27932639

RESUMO

The baculovirus, Chrysodeixis (formerly Pseudoplusia) includens nucleopolyhedrovirus (ChinNPV), is a new Alphabaculovirus pathogenic to Chrysodeixis includens Here, we report the complete genome sequences of six ChinNPV isolates. The availability of these genome sequences will provide information on ChinNPV molecular genetics, promoting understanding of its pathogenicity, diversity, and evolution.

5.
BMC Genomics ; 16: 127, 2015 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-25765042

RESUMO

BACKGROUND: Pseudoplusia includens single nucleopolyhedrovirus (PsinSNPV-IE) is a baculovirus recently identified in our laboratory, with high pathogenicity to the soybean looper, Chrysodeixis includens (Lepidoptera: Noctuidae) (Walker, 1858). In Brazil, the C. includens caterpillar is an emerging pest and has caused significant losses in soybean and cotton crops. The PsinSNPV genome was determined and the phylogeny of the p26 gene within the family Baculoviridae was investigated. RESULTS: The complete genome of PsinSNPV was sequenced (Roche 454 GS FLX - Titanium platform), annotated and compared with other Alphabaculoviruses, displaying a genome apparently different from other baculoviruses so far sequenced. The circular double-stranded DNA genome is 139,132 bp in length, with a GC content of 39.3 % and contains 141 open reading frames (ORFs). PsinSNPV possesses the 37 conserved baculovirus core genes, 102 genes found in other baculoviruses and 2 unique ORFs. Two baculovirus repeat ORFs (bro) homologs, bro-a (Psin33) and bro-b (Psin69), were identified and compared with Chrysodeixis chalcites nucleopolyhedrovirus (ChchNPV) and Trichoplusia ni single nucleopolyhedrovirus (TnSNPV) bro genes and showed high similarity, suggesting that these genes may be derived from an ancestor common to these viruses. The homologous repeats (hrs) are absent from the PsinSNPV genome, which is also the case in ChchNPV and TnSNPV. Two p26 gene homologs (p26a and p26b) were found in the PsinSNPV genome. P26 is thought to be required for optimal virion occlusion in the occlusion bodies (OBs), but its function is not well characterized. The P26 phylogenetic tree suggests that this gene was obtained from three independent acquisition events within the Baculoviridae family. The presence of a signal peptide only in the PsinSNPV p26a/ORF-20 homolog indicates distinct function between the two P26 proteins. CONCLUSIONS: PsinSNPV has a genomic sequence apparently different from other baculoviruses sequenced so far. The complete genome sequence of PsinSNPV will provide a valuable resource, contributing to studies on its molecular biology and functional genomics, and will promote the development of this virus as an effective bioinsecticide.


Assuntos
Evolução Molecular , Produtos do Gene gag/genética , Lepidópteros/genética , Nucleopoliedrovírus/genética , Animais , Lepidópteros/virologia
6.
J Invertebr Pathol ; 114(3): 258-67, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24012501

RESUMO

The soybean looper (Pseudoplusia includens Walker, 1857) has become a major pest of soybean crops in Brazil. In order to determine the genetic diversity and phylogeny of variants of Pseudoplusia includens single nucleopolyhedrovirus (PsinSNPV-IA to -IG), partial sequences of the genes lef-8, lef-9, pif-2, phr and polh were obtained following degenerate PCR and phylogenetic trees constructed using maximum parsimony and Bayesian methods. The aligned sequences showed polymorphisms among the isolates, where the pif-2 gene was by far the most variable and is predicted to be under positive selection. Furthermore, some of the pif-2 DNA sequence mutations are predicted to result in significant amino acid substitutions, possibly leading to changes in oral infectivity of this baculovirus. Cladistic analysis revealed two closely related monophyletic groups, one containing PsinNPV isolates IB, IC and ID and another containing isolates IA, IE, IF and IG. The phylogeny of PsinSNPV in relation to 56 other baculoviruses was also determined from the concatenated partial LEF-8, LEF-9, PIF-2 and POLH/GRAN deduced amino acid sequences, using maximum-parsimony and Bayesian methods. This analysis clearly places PsinSNPV with the Group II Alphabaculovirus, where PsinSNPV is most closely related to Chrysodeixis chalcites NPV and Trichoplusia ni SNPV.


Assuntos
Mariposas/virologia , Nucleopoliedrovírus/genética , Polimorfismo Genético , Substituição de Aminoácidos , Animais , Sequência de Bases , Análise Mutacional de DNA , Genes Virais , Dados de Sequência Molecular , Nucleopoliedrovírus/classificação , Controle Biológico de Vetores , Filogenia , Alinhamento de Sequência
7.
J Invertebr Pathol ; 105(1): 98-104, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20553728

RESUMO

The caterpillar Pseudoplusia includens (Walker, 1857) (Lepidoptera, Noctuidae), known as soybean looper, is a pest that has recently assumed greater importance in soybean in Brazil. Isolates of nucleopolyhedroviruses (NPVs) of this pest have been identified from cotton in Guatemala and soybean farms in Brazil, providing an interesting perspective of potential use of viral insecticide against the insect in lieu to chemical insecticides. With the objective to contribute to the characterization studies of this virus, morphological and molecular analyses and biological activity were carried out with seven P. includens viral isolates (I-A to I-G). Electron microscopy of viral samples, purified from macerated infected larvae, showed particles with typical morphology of the Baculoviridae family, genus Alphabaculovirus (Nucleopolyhedrovirus - NPV) presenting virions with only a single nucleocapsid per envelope (SNPV) occluded in a protein matrix, forming occlusion bodies (OB). This virus was then classified as P. includens single nucleopolyhedrovirus (PsinSNPV). OB particles analyzed in SDS-polyacrylamide gel showed an intense band corresponding in size to NPV polyhedrin protein. DNA restriction profiles of the PsinSNPV isolates showed differences in the fragment size and number suggesting the existence of genotypic variants, except between I-E and I-F profiles that were similar. Among the isolates tested for infectivity against P. includens, I-A, I-E and I-F were the most virulent. Survival times (ST(50)) varied according to viral concentration, with significant differences among isolates for the three higher concentrations.


Assuntos
Lepidópteros/virologia , Nucleopoliedrovírus/patogenicidade , Controle Biológico de Vetores/métodos , Animais , DNA Viral/genética , Genótipo , Lepidópteros/ultraestrutura , Nucleopoliedrovírus/genética , Vírion/genética , Vírion/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA