Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Cereb Circ Cogn Behav ; 5: 100189, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37941765

RESUMO

Although dementia research has been dominated by Alzheimer's disease (AD), most dementia in older people is now recognised to be due to mixed pathologies, usually combining vascular and AD brain pathology. Vascular cognitive impairment (VCI), which encompasses vascular dementia (VaD) is the second most common type of dementia. Models of VCI have been delayed by limited understanding of the underlying aetiology and pathogenesis. This review by a multidisciplinary, diverse (in terms of sex, geography and career stage), cross-institute team provides a perspective on limitations to current VCI models and recommendations for improving translation and reproducibility. We discuss reproducibility, clinical features of VCI and corresponding assessments in models, human pathology, bioinformatics approaches, and data sharing. We offer recommendations for future research, particularly focusing on small vessel disease as a main underpinning disorder.

2.
J Clin Invest ; 132(14)2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35671105

RESUMO

In Guillain-Barré syndrome (GBS), both axonal and demyelinating variants can be mediated by complement-fixing anti-GM1 ganglioside autoantibodies that target peripheral nerve axonal and Schwann cell (SC) membranes, respectively. Critically, the extent of axonal degeneration in both variants dictates long-term outcome. The differing pathomechanisms underlying direct axonal injury and the secondary bystander axonal degeneration following SC injury are unresolved. To investigate this, we generated glycosyltransferase-disrupted transgenic mice that express GM1 ganglioside either exclusively in neurons [GalNAcT-/--Tg(neuronal)] or glia [GalNAcT-/--Tg(glial)], thereby allowing anti-GM1 antibodies to solely target GM1 in either axonal or SC membranes, respectively. Myelinated-axon integrity in distal motor nerves was studied in transgenic mice exposed to anti-GM1 antibody and complement in ex vivo and in vivo injury paradigms. Axonal targeting induced catastrophic acute axonal disruption, as expected. When mice with GM1 in SC membranes were targeted, acute disruption of perisynaptic glia and SC membranes at nodes of Ranvier (NoRs) occurred. Following glial injury, axonal disruption at NoRs also developed subacutely, progressing to secondary axonal degeneration. These models differentiate the distinctly different axonopathic pathways under axonal and glial membrane targeting conditions, and provide insights into primary and secondary axonal injury, currently a major unsolved area in GBS research.


Assuntos
Gangliosídeos , Síndrome de Guillain-Barré , Animais , Autoanticorpos , Modelos Animais de Doenças , Gangliosídeo G(M1) , Síndrome de Guillain-Barré/genética , Camundongos , Camundongos Transgênicos , Células de Schwann
3.
Front Mol Neurosci ; 15: 860410, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35493328

RESUMO

Zika virus (ZIKV) is a neurotropic flavivirus recently linked to congenital ZIKV syndrome in children and encephalitis and Guillain-Barré syndrome in adults. Neurotropic viruses often use axons to traffic to neuronal or glial cell somas where they either remain latent or replicate and proceed to infect new cells. Consequently, it has been suggested that axon degeneration could represent an evolutionarily conserved mechanism to limit viral spread. Whilst it is not known if ZIKV transits in axons, we previously reported that ZIKV infection of glial cells in a murine spinal cord-derived cell culture model of the CNS is associated with a profound loss of neuronal cell processes. This, despite that postmitotic neurons are relatively refractory to infection and death. Here, we tested the hypothesis that ZIKV-associated degeneration of neuronal processes is dependent on activation of Sterile alpha and armadillo motif-containing protein 1 (SARM1), an NADase that acts as a central executioner in a conserved axon degeneration pathway. To test this, we infected wild type and Sarm1 homozygous or heterozygous null cell cultures with ZIKV and examined NAD+ levels as well as the survival of neurons and their processes. Unexpectedly, ZIKV infection led to a rapid SARM1-independent reduction in NAD+. Nonetheless, the subsequent profound loss of neuronal cell processes was SARM1-dependent and was preceded by early changes in the appearance of ß-tubulin III staining. Together, these data identify a role for SARM1 in the pathogenesis of ZIKV infection, which may reflect SARM1's conserved prodegenerative function, independent of its NADase activity.

4.
Glia ; 69(8): 2023-2036, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33942402

RESUMO

Some children with proven intrauterine Zika virus (ZIKV) infection who were born asymptomatic subsequently manifested neurodevelopmental delays, pointing to impairment of development perinatally and postnatally. To model this, we infected postnatal day (P) 5-6 (equivalent to the perinatal period in humans) susceptible mice with a mammalian cell-propagated ZIKV clinical isolate from the Brazilian outbreak in 2015. All infected mice appeared normal up to 4 days post-intraperitoneal inoculation (dpi), but rapidly developed severe clinical signs at 5-6 dpi. All nervous tissue examined at 5/6 dpi appeared grossly normal. However, anti-ZIKV positive cells were observed in the optic nerve, brain, and spinal cord; predominantly in white matter. Co-labeling with cell type specific markers demonstrated oligodendrocytes and astrocytes support productive infection. Rarely, ZIKV positive neurons were observed. In spinal cord white matter, which we examined in detail, apoptotic cells were evident; the density of oligodendrocytes was significantly reduced; and there was localized microglial reactivity including expression of the NLRP3 inflammasome. Together, our observations demonstrate that a clinically relevant ZIKV isolate can directly impact oligodendrocytes. As primary oligodendrocyte cell death can lead later to secondary autoimmune demyelination, our observations may help explain neurodevelopmental delays in infants appearing asymptomatic at birth and commend lifetime surveillance.


Assuntos
Infecção por Zika virus , Zika virus , Animais , Modelos Animais de Doenças , Feminino , Camundongos , Neurônios , Oligodendroglia , Gravidez , Infecção por Zika virus/complicações
5.
F1000Res ; 8: 117, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31069065

RESUMO

The normal development and maintenance of CNS white matter, and its responses to disease and injury, are defined by synergies between axons, oligodendrocytes, astrocytes and microglia, and further influenced by peripheral components such as the gut microbiome and the endocrine and immune systems. Consequently, mechanistic insights, therapeutic approaches and safety tests rely ultimately on in vivo models and clinical trials. However, in vitro models that replicate the cellular complexity of the CNS can inform these approaches, reducing costs and minimising the use of human material or experimental animals; in line with the principles of the 3Rs. Using electrophysiology, pharmacology, time-lapse imaging, and immunological assays, we demonstrate that murine spinal cord-derived myelinating cell cultures recapitulate spinal-like electrical activity and innate CNS immune functions, including responses to disease-relevant myelin debris and pathogen associated molecular patterns (PAMPs).  Further, we show they are (i) amenable to siRNA making them suitable for testing gene-silencing strategies; (ii) can be established on microelectrode arrays (MEAs) for electrophysiological studies; and (iii) are compatible with multi-well microplate formats for semi-high throughput screens, maximising information output whilst further reducing animal use. We provide protocols for each of these. Together, these advances increase the utility of this in vitro tool for studying normal and pathological development and function of white matter, and for screening therapeutic molecules or gene targets for diseases such as multiple sclerosis, motor neuron disease or spinal cord injury, whilst avoiding in vivo approaches on experimental animals.


Assuntos
Modelos Biológicos , Esclerose Múltipla , Traumatismos da Medula Espinal , Substância Branca , Animais , Axônios , Humanos , Camundongos , Bainha de Mielina
6.
J Infect Dis ; 217(9): 1506-1507, 2018 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-29409003
8.
Ann Intern Med ; 165(6): 447, 2016 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-27653706
14.
Int J Dermatol ; 50(3): 255-61, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21342156

RESUMO

An animal model of granulomatous hypersensitivity has been developed, which reproduces some features of the pathologies of important chronic granulomatous disorders, including tuberculosis, tuberculoid leprosy, sarcoidosis, berylliosis, Crohn's disease, and sensitivity to zirconium. The lesions consist of focal collections of epithelioid cells surrounded by lymphocytes to form tubercles. The epithelioid cell has a secretory function and is not phagocytic. Plasmacytoid dendritic cells are precursors of epithelioid cells, which are therefore part of the innate immune system. Subplasmalemmal linear densities are also present in these cells. This autoimmune model has been induced in rabbits using a non-myelin sensory peripheral antigen to reproduce the features of tuberculoid leprosy. The antigen is probably present only in human tissue. A granuloma antigen, which is tissue specific similar to that in peripheral nerves, could be present in sarcoidosis and Crohn's disease. In multiple sclerosis, mononuclear cells in the brain parenchyma are not phagocytic and are therefore similar to epithelioid cells. The induction of tolerance leading to the development of a vaccine to prevent the lesions in multiple sclerosis, sarcoidosis, and Crohn's disease is possible after purification of the granuloma antigen.


Assuntos
Modelos Animais de Doenças , Granuloma , Hipersensibilidade , Hanseníase Tuberculoide , Coelhos , Animais , Células Epitelioides/imunologia , Células Epitelioides/patologia , Células Epitelioides/fisiologia , Granuloma/imunologia , Granuloma/patologia , Granuloma/fisiopatologia , Humanos , Hipersensibilidade/imunologia , Hipersensibilidade/patologia , Hipersensibilidade/fisiopatologia , Hanseníase Tuberculoide/imunologia , Hanseníase Tuberculoide/patologia , Hanseníase Tuberculoide/fisiopatologia
17.
s.l; s.n; 2010. 2 p. ilus.
Não convencional em Inglês | Sec. Est. Saúde SP, SESSP-ILSLACERVO, Sec. Est. Saúde SP | ID: biblio-1243008
19.
JAMA ; 297(5): 465; author reply 466-7, 2007 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-17284692
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA