Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Genes (Basel) ; 14(6)2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-37372314

RESUMO

We are interested in detecting a departure from the baseline in a longitudinal analysis in the context of multiple organ dysfunction syndrome (MODS). In particular, we are given gene expression reads at two time points for a fixed number of genes and individuals. The individuals can be subdivided into two groups, denoted as groups A and B. Using the two time points, we compute a contrast of gene expression reads per individual and gene. The age of each individual is known and it is used to compute, for each gene separately, a linear regression of the gene expression contrasts on the individual's age. Looking at the intercept of the linear regression to detect a departure from the baseline, we aim to reliably single out those genes for which there is a difference in the intercept among those individuals in group A and not in group B. In this work, we develop testing methodology for this setting based on two hypothesis tests-one under the null and one under an appropriately formulated alternative. We demonstrate the validity of our approach using a dataset created by bootstrapping from a real data application in the context of multiple organ dysfunction syndrome (MODS).


Assuntos
Insuficiência de Múltiplos Órgãos , Humanos , Insuficiência de Múltiplos Órgãos/genética , Insuficiência de Múltiplos Órgãos/diagnóstico , Modelos Lineares , Expressão Gênica
2.
Cell ; 185(18): 3356-3374.e22, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36055199

RESUMO

Drug-tolerant persister cells (persisters) evade apoptosis upon targeted and conventional cancer therapies and represent a major non-genetic barrier to effective cancer treatment. Here, we show that cells that survive treatment with pro-apoptotic BH3 mimetics display a persister phenotype that includes colonization and metastasis in vivo and increased sensitivity toward ferroptosis by GPX4 inhibition. We found that sublethal mitochondrial outer membrane permeabilization (MOMP) and holocytochrome c release are key requirements for the generation of the persister phenotype. The generation of persisters is independent of apoptosome formation and caspase activation, but instead, cytosolic cytochrome c induces the activation of heme-regulated inhibitor (HRI) kinase and engagement of the integrated stress response (ISR) with the consequent synthesis of ATF4, all of which are required for the persister phenotype. Our results reveal that sublethal cytochrome c release couples sublethal MOMP to caspase-independent initiation of an ATF4-dependent, drug-tolerant persister phenotype.


Assuntos
Citocromos c , Neoplasias/tratamento farmacológico , Animais , Apoptose , Proteínas de Transporte , Caspases/metabolismo , Citocromos c/metabolismo , Resistencia a Medicamentos Antineoplásicos , Humanos , Camundongos , Mitocôndrias/metabolismo
3.
Elife ; 102021 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-34845983

RESUMO

T-cell receptors (TCRs) encode clinically valuable information that reflects prior antigen exposure and potential future response. However, despite advances in deep repertoire sequencing, enormous TCR diversity complicates the use of TCR clonotypes as clinical biomarkers. We propose a new framework that leverages experimentally inferred antigen-associated TCRs to form meta-clonotypes - groups of biochemically similar TCRs - that can be used to robustly quantify functionally similar TCRs in bulk repertoires across individuals. We apply the framework to TCR data from COVID-19 patients, generating 1831 public TCR meta-clonotypes from the SARS-CoV-2 antigen-associated TCRs that have strong evidence of restriction to patients with a specific human leukocyte antigen (HLA) genotype. Applied to independent cohorts, meta-clonotypes targeting these specific epitopes were more frequently detected in bulk repertoires compared to exact amino acid matches, and 59.7% (1093/1831) were more abundant among COVID-19 patients that expressed the putative restricting HLA allele (false discovery rate [FDR]<0.01), demonstrating the potential utility of meta-clonotypes as antigen-specific features for biomarker development. To enable further applications, we developed an open-source software package, tcrdist3, that implements this framework and facilitates flexible workflows for distance-based TCR repertoire analysis.


Assuntos
Antígenos Virais/genética , COVID-19/imunologia , Antígenos HLA/genética , Receptores de Antígenos de Linfócitos T/genética , SARS-CoV-2/imunologia , Antígenos Virais/imunologia , Biomarcadores , COVID-19/genética , Regiões Determinantes de Complementaridade/imunologia , Biologia Computacional/métodos , Epitopos/genética , Epitopos/imunologia , Genótipo , Antígenos HLA/imunologia , Humanos , Receptores de Antígenos de Linfócitos T/imunologia
4.
N Engl J Med ; 384(16): e59, 2021 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-33882216
5.
J Clin Invest ; 131(9)2021 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-33630763

RESUMO

Discovering dominant epitopes for T cells, particularly CD4+ T cells, in human immune-mediated diseases remains a significant challenge. Here, we used bronchoalveolar lavage (BAL) cells from HLA-DP2-expressing patients with chronic beryllium disease (CBD), a debilitating granulomatous lung disorder characterized by accumulations of beryllium-specific (Be-specific) CD4+ T cells in the lung. We discovered lung-resident CD4+ T cells that expressed a disease-specific public CDR3ß T cell receptor motif and were specific to Be-modified self-peptides derived from C-C motif ligand 4 (CCL4) and CCL3. HLA-DP2-CCL/Be tetramer staining confirmed that these chemokine-derived peptides represented major antigenic targets in CBD. Furthermore, Be induced CCL3 and CCL4 secretion in the lungs of mice and humans. In a murine model of CBD, the addition of LPS to Be oxide exposure enhanced CCL4 and CCL3 secretion in the lung and significantly increased the number and percentage of CD4+ T cells specific for the HLA-DP2-CCL/Be epitope. Thus, we demonstrate a direct link between Be-induced innate production of chemokines and the development of a robust adaptive immune response to those same chemokines presented as Be-modified self-peptides, creating a cycle of innate and adaptive immune activation.


Assuntos
Beriliose/imunologia , Berílio/toxicidade , Linfócitos T CD4-Positivos/imunologia , Quimiocina CCL3/imunologia , Quimiocina CCL4/imunologia , Pulmão/imunologia , Animais , Antígenos , Beriliose/genética , Beriliose/patologia , Linfócitos T CD4-Positivos/patologia , Quimiocina CCL3/genética , Quimiocina CCL4/genética , Doença Crônica , Feminino , Cadeias beta de HLA-DP/genética , Cadeias beta de HLA-DP/imunologia , Humanos , Imunidade Inata/efeitos dos fármacos , Imunidade Inata/genética , Pulmão/patologia , Masculino , Camundongos
6.
J Infect Dis ; 223(9): 1555-1563, 2021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-33556959

RESUMO

Repeated infections with endemic human coronaviruses (hCoV) are thought to reflect lack of long-lasting protective immunity. We evaluated circulating human CD4 T cells collected prior to 2020 for reactivity towards hCoV spike proteins, probing for the ability to produce interferon-γ, interleukin-2, or granzyme B. We found robust reactivity to spike-derived epitopes, comparable to influenza, but highly variable abundance and functional potential across subjects, depending on age and viral antigen specificity. To explore potential of these memory cells to be recruited in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, we examined the subjects for cross-reactive recognition of epitopes from SARS-CoV-2 nucleocapsid, membrane/envelope, and spike. Functional potential of these cross-reactive CD4 T cells was highly variable; nucleocapsid-specific CD4 T cells but not spike-reactive cells showed exceptionally high levels of granzyme production upon stimulation. These results are considered in light of recruitment of hCoV-reactive cells into responses to SARS-CoV infections or vaccinations.


Assuntos
Linfócitos T CD4-Positivos/virologia , COVID-19/imunologia , Infecções por Coronavirus/imunologia , Epitopos de Linfócito T/imunologia , SARS-CoV-2/imunologia , Adulto , Idoso , Proteínas do Envelope de Coronavírus/imunologia , Proteínas M de Coronavírus/imunologia , Proteínas do Nucleocapsídeo de Coronavírus/imunologia , Reações Cruzadas , Granzimas/metabolismo , Humanos , Memória Imunológica , Interferon gama/metabolismo , Interleucina-2/metabolismo , Pessoa de Meia-Idade , Glicoproteína da Espícula de Coronavírus/imunologia
7.
Cell ; 175(2): 429-441.e16, 2018 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-30245008

RESUMO

Targeting autophagy in cancer cells and in the tumor microenvironment are current goals of cancer therapy. However, components of canonical autophagy play roles in other biological processes, adding complexity to this goal. One such alternative function of autophagy proteins is LC3-associated phagocytosis (LAP), which functions in phagosome maturation and subsequent signaling events. Here, we show that impairment of LAP in the myeloid compartment, rather than canonical autophagy, induces control of tumor growth by tumor-associated macrophages (TAM) upon phagocytosis of dying tumor cells. Single-cell RNA sequencing (RNA-seq) analysis revealed that defects in LAP induce pro-inflammatory gene expression and trigger STING-mediated type I interferon responses in TAM. We found that the anti-tumor effects of LAP impairment require tumor-infiltrating T cells, dependent upon STING and the type I interferon response. Therefore, autophagy proteins in the myeloid cells of the tumor microenvironment contribute to immune suppression of T lymphocytes by effecting LAP.


Assuntos
Tolerância Imunológica/fisiologia , Proteínas Associadas aos Microtúbulos/fisiologia , Fagocitose/fisiologia , Animais , Autofagia/imunologia , Linhagem Celular , Interações Hospedeiro-Patógeno , Humanos , Tolerância Imunológica/imunologia , Macrófagos , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Associadas aos Microtúbulos/metabolismo , Células Mieloides/metabolismo , Fagossomos/fisiologia , Linfócitos T/metabolismo , Microambiente Tumoral/fisiologia
8.
Mol Ecol ; 25(4): 864-81, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26757135

RESUMO

Natural history collections provide an immense record of biodiversity on Earth. These repositories have traditionally been used to address fundamental questions in biogeography, systematics and conservation. However, they also hold the potential for studying evolution directly. While some of the best direct observations of evolution have come from long-term field studies or from experimental studies in the laboratory, natural history collections are providing new insights into evolutionary change in natural populations. By comparing phenotypic and genotypic changes in populations through time, natural history collections provide a window into evolutionary processes. Recent studies utilizing this approach have revealed some dramatic instances of phenotypic change over short timescales in response to presumably strong selective pressures. In some instances, evolutionary change can be paired with environmental change, providing a context for potential selective forces. Moreover, in a few cases, the genetic basis of phenotypic change is well understood, allowing for insight into adaptive change at multiple levels. These kinds of studies open the door to a wide range of previously intractable questions by enabling the study of evolution through time, analogous to experimental studies in the laboratory, but amenable to a diversity of species over longer timescales in natural populations.


Assuntos
Biodiversidade , Evolução Biológica , Museus , Animais , Conservação dos Recursos Naturais , Variação Genética , Genética Populacional , Genótipo , Fenótipo , Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA