Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 103(21-22): 9057-9066, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31659417

RESUMO

Polyhydroxyalkanoates (PHAs) are considerable biopolymers that have gained an increasing biotechnological interest in different applications, although their industrial production presents several limitations. Filamentous bacterial cells could represent a possible strategy to increase PHA yield, since more abundant PHA inclusions can be stored in elongated than in rod-shaped cells. At first, we determined the optimal batch culture conditions to induce filamentation in Pseudomonas mediterranea CFBP-5447T, using glutamine, glycerol, glucose, and sodium octanoate, as the sole carbon source, at low- (100 rpm) or high- (250 rpm) shaking speeds. Successively, a fermentative process was set up using glutamine in a co-metabolic strategy with glycerol, and the PHAs production was compared in rod-shaped and filamentous cells. High glutamine concentrations (from 28 to 56 mM) were able to induce alone filamentation, whereas at lower glutamine concentrations (5-10 mM), the shaking speeds became critical to allow or not filamentous phenotype. PHA granule production was higher in filamentous than in rod-shaped cells, when glycerol (46.6 mM) was added to glutamine (5 mM) in co-metabolism, and fermentation was performed at a low-shaking speed. After extraction and precipitation, PHA yield was about two times higher in filamentous than that rod-shaped cells. Our results provide new insights into filament-inducing conditions and indicate a potential use of filamentous P. mediterranea CFBP-5447T cells to increase PHA yield. These findings could have great advantages in PHAs recovering during downstream processes, since the harvesting of elongated cells is much less time-consuming and energy expensive than required with rod-shaped cells.


Assuntos
Glutamina/metabolismo , Poli-Hidroxialcanoatos/biossíntese , Pseudomonas/metabolismo , Reatores Biológicos/microbiologia , Biotecnologia , Regulação Bacteriana da Expressão Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA