Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Elife ; 102021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34812142

RESUMO

Variants in the high confident autism spectrum disorder (ASD) gene ANK2 target both ubiquitously expressed 220 kDa ankyrin-B and neurospecific 440 kDa ankyrin-B (AnkB440) isoforms. Previous work showed that knock-in mice expressing an ASD-linked Ank2 variant yielding a truncated AnkB440 product exhibit ectopic brain connectivity and behavioral abnormalities. Expression of this variant or loss of AnkB440 caused axonal hyperbranching in vitro, which implicated AnkB440 microtubule bundling activity in suppressing collateral branch formation. Leveraging multiple mouse models, cellular assays, and live microscopy, we show that AnkB440 also modulates axon collateral branching stochastically by reducing the number of F-actin-rich branch initiation points. Additionally, we show that AnkB440 enables growth cone (GC) collapse in response to chemorepellent factor semaphorin 3 A (Sema 3 A) by stabilizing its receptor complex L1 cell adhesion molecule/neuropilin-1. ASD-linked ANK2 variants failed to rescue Sema 3A-induced GC collapse. We propose that impaired response to repellent cues due to AnkB440 deficits leads to axonal targeting and branch pruning defects and may contribute to the pathogenicity of ANK2 variants.


Assuntos
Anquirinas/genética , Orientação de Axônios/genética , Axônios/fisiologia , Semaforina-3A/genética , Transdução de Sinais/genética , Animais , Anquirinas/metabolismo , Camundongos , Semaforina-3A/metabolismo
2.
Nat Genet ; 53(7): 1006-1021, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34211179

RESUMO

SPTBN1 encodes ßII-spectrin, the ubiquitously expressed ß-spectrin that forms micrometer-scale networks associated with plasma membranes. Mice deficient in neuronal ßII-spectrin have defects in cortical organization, developmental delay and behavioral deficiencies. These phenotypes, while less severe, are observed in haploinsufficient animals, suggesting that individuals carrying heterozygous SPTBN1 variants may also show measurable compromise of neural development and function. Here we identify heterozygous SPTBN1 variants in 29 individuals with developmental, language and motor delays; mild to severe intellectual disability; autistic features; seizures; behavioral and movement abnormalities; hypotonia; and variable dysmorphic facial features. We show that these SPTBN1 variants lead to effects that affect ßII-spectrin stability, disrupt binding to key molecular partners, and disturb cytoskeleton organization and dynamics. Our studies define SPTBN1 variants as the genetic basis of a neurodevelopmental syndrome, expand the set of spectrinopathies affecting the brain and underscore the critical role of ßII-spectrin in the central nervous system.


Assuntos
Genes Dominantes , Predisposição Genética para Doença , Variação Genética , Transtornos do Neurodesenvolvimento/genética , Espectrina/genética , Animais , Estudos de Associação Genética/métodos , Heterozigoto , Humanos , Camundongos , Transtornos do Neurodesenvolvimento/diagnóstico , Fenótipo , Espectrina/metabolismo
3.
J Vis Exp ; (150)2019 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-31524875

RESUMO

Astrocytes are among the most abundant cell types in the adult brain, where they play key roles in a multiplicity of functions. As a central player in brain homeostasis, astrocytes supply neurons with vital metabolites and buffer extracellular water, ions, and glutamate. An integral component of the "tri-partite" synapse, astrocytes are also critical in the formation, pruning, maintenance, and modulation of synapses. To enable these highly interactive functions, astrocytes communicate among themselves and with other glial cells, neurons, the brain vasculature, and the extracellular environment through a multitude of specialized membrane proteins that include cell adhesion molecules, aquaporins, ion channels, neurotransmitter transporters, and gap junction molecules. To support this dynamic flux, astrocytes, like neurons, rely on tightly coordinated and efficient intracellular transport. Unlike neurons, where intracellular trafficking has been extensively delineated, microtubule-based transport in astrocytes has been less studied. Nonetheless, exo- and endocytic trafficking of cell membrane proteins and intracellular organelle transport orchestrates astrocytes' normal biology, and these processes are often affected in disease or in response to injury. Here we present a straightforward protocol to culture high quality murine astrocytes, to fluorescently label astrocytic proteins and organelles of interest, and to record their intracellular transport dynamics using time-lapse confocal microscopy. We also demonstrate how to extract and quantify relevant transport parameters from the acquired movies using available image analysis software (i.e., ImageJ/FIJI) plugins.


Assuntos
Astrócitos/metabolismo , Espaço Intracelular/metabolismo , Organelas/metabolismo , Animais , Astrócitos/citologia , Transporte Biológico , Encéfalo/metabolismo , Células Cultivadas , Proteínas de Fluorescência Verde/metabolismo , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA