Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 18978, 2024 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-39152212

RESUMO

A major and irreversible complication of diabetes is diabetic peripheral neuropathy (DPN), which can lead to significant disability and decreased quality of life. Prior work demonstrates the peptide hormone Angiotensin II (Ang II) is released locally in neuropathy and drives inflammation and impaired endoneurial blood flow. Therefore, we proposed that by utilizing a local thermoresponsive hydrogel injection, we could deliver inhibitors of angiotensin-converting enzyme (ACE) to suppress Ang II production and reduce nerve dysfunction in DPN through local drug release. The ACE inhibitor captopril was encapsulated into a micelle, which was then embedded into a reversibly thermoresponsive pluronics-based hydrogel matrix. Drug-free and captopril-loaded hydrogels demonstrated excellent product stability and sterility. Rheology testing confirmed sol properties with low viscosity at ambient temperature and increased viscosity and gelation at 37 °C. Captopril-loaded hydrogels significantly inhibited Ang II production in comparison to drug-free hydrogels. DPN mice treated with captopril-loaded hydrogels displayed normalized mechanical sensitivity and reduced inflammation, without side-effects associated with systemic exposure. Our data demonstrate the feasibility of repurposing ACE inhibitors as locally delivered anti-inflammatories for the treatment of sensory deficits in DPN. To the best of our knowledge, this is the first example of a locally delivered ACE inhibitor for the treatment of DPN.


Assuntos
Inibidores da Enzima Conversora de Angiotensina , Captopril , Neuropatias Diabéticas , Hidrogéis , Captopril/administração & dosagem , Captopril/farmacologia , Captopril/química , Animais , Neuropatias Diabéticas/tratamento farmacológico , Hidrogéis/química , Camundongos , Inibidores da Enzima Conversora de Angiotensina/administração & dosagem , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Angiotensina II/administração & dosagem , Viscosidade , Temperatura , Reologia , Masculino
2.
Int J Nanomedicine ; 19: 7253-7271, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39050880

RESUMO

Soft tissue injuries often involve muscle and peripheral nerves and are qualitatively distinct from single-tissue injuries. Prior research suggests that damaged innervation compromises wound healing. To test this in a traumatic injury context, we developed a novel mouse model of nerve and lower limb polytrauma, which features greater pain hypersensitivity and more sustained macrophage infiltration than either injury in isolation. We also show that macrophages are crucial mediators of pain hypersensitivity in this model by delivering macrophage-targeted nanoemulsions laden with the cyclooxygenase-2 (COX-2) inhibitor celecoxib. This treatment was more effective in males than females, and more effective when delivered 3 days post-injury than 7 days post-injury. The COX-2 inhibiting nanoemulsion drove widespread anti-inflammatory changes in cytokine expression in polytrauma-affected peripheral nerves. Our data shed new light on the modulation of inflammation by injured nerve input and demonstrate macrophage-targeted nanoimmunomodulation can produce rapid and sustained pain relief following complex injuries.


Assuntos
Celecoxib , Inibidores de Ciclo-Oxigenase 2 , Ciclo-Oxigenase 2 , Macrófagos , Animais , Macrófagos/efeitos dos fármacos , Masculino , Feminino , Celecoxib/farmacologia , Celecoxib/administração & dosagem , Inibidores de Ciclo-Oxigenase 2/farmacologia , Camundongos , Ciclo-Oxigenase 2/metabolismo , Traumatismo Múltiplo/complicações , Emulsões/química , Emulsões/farmacologia , Camundongos Endogâmicos C57BL , Dor/tratamento farmacológico , Modelos Animais de Doenças , Citocinas/metabolismo , Imunomodulação/efeitos dos fármacos
3.
Muscle Nerve ; 69(1): 103-114, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37929655

RESUMO

INTRODUCTION/AIMS: Prior studies have emphasized the role of inflammation in the response to injury and muscle regeneration, but little emphasis has been placed on characterizing the relationship between innate inflammation, pain, and functional impairment. The aim of our study was to determine the contribution of innate immunity to prolonged pain following muscle contusion. METHODS: We developed a closed-impact mouse model of muscle contusion and a macrophage-targeted near-infrared fluorescent nanoemulsion. Closed-impact contusions were delivered to the lower left limb. Pain sensitivity, gait dysfunction, and inflammation were assessed in the days and weeks post-contusion. Macrophage accumulation was imaged in vivo by injecting i.v. near-infrared nanoemulsion. RESULTS: Despite hindpaw hypersensitivity persisting for several weeks, disruptions to gait and grip strength typically resolved within 10 days of injury. Using non-invasive imaging and immunohistochemistry, we show that macrophage density peaks in and around the affected muscle 3 day post-injury and quickly subsides. However, macrophage density in the ipsilateral sciatic nerve and dorsal root ganglia (DRG) increases more gradually and persists for at least 14 days. DISCUSSION: In this study, we demonstrate pain sensitivity is influenced by the degree of lower muscle contusion, without significant changes to gait and grip strength. This may be due to modulation of pain signaling by macrophage proliferation in the sciatic nerve, upstream from the site of injury. Our work suggests chronic pain developing from muscle contusion is driven by macrophage-derived neuroinflammation in the peripheral nervous system.


Assuntos
Contusões , Dor , Camundongos , Animais , Macrófagos , Contusões/diagnóstico por imagem , Músculos , Inflamação
4.
Pharmaceutics ; 15(10)2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37896130

RESUMO

Despite long-term immunosuppression, organ transplant recipients face the risk of immune rejection and graft loss. Tacrolimus (TAC, FK506, Prograf®) is an FDA-approved keystone immunosuppressant for preventing transplant rejection. However, it undergoes extensive first-pass metabolism and has a narrow therapeutic window, which leads to erratic bioavailability and toxicity. Local delivery of TAC directly into the graft, instead of systemic delivery, can improve safety, efficacy, and tolerability. Macrophages have emerged as promising therapeutic targets as their increased levels correlate with an increased risk of organ rejection and a poor prognosis post-transplantation. Here, we present a locally injectable drug delivery platform for macrophages, where TAC is incorporated into a colloidally stable nanoemulsion and then formulated as a reversibly thermoresponsive, pluronic-based nanoemulgel (NEG). This novel formulation is designed to undergo a sol-to-gel transition at physiological temperature to sustain TAC release in situ at the site of local application. We also show that TAC-NEG mitigates the release of proinflammatory cytokines and nitric oxide from lipopolysaccharide (LPS)-activated macrophages. To the best of our knowledge, this is the first TAC-loaded nanoemulgel with demonstrated anti-inflammatory effects on macrophages in vitro.

5.
Bio Protoc ; 13(19): e4842, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37817906

RESUMO

Tracking macrophages by non-invasive molecular imaging can provide useful insights into the immunobiology of inflammatory disorders in preclinical disease models. Perfluorocarbon nanoemulsions (PFC-NEs) have been well documented in their ability to be taken up by macrophages through phagocytosis and serve as 19F magnetic resonance imaging (MRI) tracers of inflammation in vivo and ex vivo. Incorporation of near-infrared fluorescent (NIRF) dyes in PFC-NEs can help monitor the spatiotemporal distribution of macrophages in vivo during inflammatory processes, using NIRF imaging as a complementary methodology to MRI. Here, we discuss in depth how both colloidal and fluorescence stabilities of the PFC-NEs are essential for successful and reliable macrophage tracking in vivo and for their detection in excised tissues ex vivo by NIRF imaging. Furthermore, PFC-NE quality assures NIRF imaging reproducibility and reliability across preclinical studies, providing insights into inflammation progression and therapeutic response. Previous studies focused on assessments of colloidal property changes in response to stress and during storage as a means of quality control. We recently focused on the joint evaluation of both colloidal and fluorescence properties and their relationship to NIRF imaging outcomes. In this protocol, we summarize the key assessments of the fluorescent dye-labeled nanoemulsions, which include long-term particle size distribution monitoring as the measure of colloidal stability and monitoring of the fluorescence signal. Due to its simplicity and reproducibility, our protocols are easy to adopt for researchers to assess the quality of PFC-NEs for in vivo NIRF imaging applications.

6.
Sci Rep ; 13(1): 15229, 2023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37709807

RESUMO

Activated macrophages play a critical role in the orchestration of inflammation and inflammatory pain in several chronic diseases. We present here the first perfluorocarbon nanoemulsion (PFC NE) that is designed to preferentially target activated macrophages and can deliver up to three payloads (two fluorescent dyes and a COX-2 inhibitor). Folate receptors are overexpressed on activated macrophages. Therefore, we introduced a folate-PEG-cholesterol conjugate into the formulation. The incorporation of folate conjugate did not require changes in processing parameters and did not change the droplet size or fluorescent properties of the PFC NE. The uptake of folate-conjugated PFC NE was higher in activated macrophages than in resting macrophages. Flow cytometry showed that the uptake of folate-conjugated PFC NE occurred by both phagocytosis and receptor-mediated endocytosis. Furthermore, folate-conjugated PFC NE inhibited the release of proinflammatory cytokines (TNF-α and IL-6) more effectively than nonmodified PFC NE, while drug loading and COX-2 inhibition were comparable. The PFC NEs reported here were successfully produced on multiple scales, from 25 to 200 mL, and by using two distinct processors (microfluidizers: M110S and LM20). Therefore, folate-conjugated PFC NEs are viable anti-inflammatory theranostic nanosystems for macrophage drug delivery and imaging.


Assuntos
Fluorocarbonos , Medicina de Precisão , Ciclo-Oxigenase 2 , Macrófagos , Corantes Fluorescentes , Ácido Fólico
7.
Int J Mol Sci ; 24(11)2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37298117

RESUMO

Given decades of neuroinflammatory pain research focused only on males, there is an urgent need to better understand neuroinflammatory pain in females. This, paired with the fact that currently there is no long-term effective treatment for neuropathic pain furthers the need to evaluate how neuropathic pain develops in both sexes and how it can be relieved. Here we show that chronic constriction injury of the sciatic nerve caused comparable levels of mechanical allodynia in both sexes. Using a COX-2 inhibiting theranostic nanoemulsion with increased drug loading, both sexes achieved similar reduction in mechanical hypersensitivity. Given that both sexes have improved pain behavior, we specifically explored differential gene expression between sexes in the dorsal root ganglia (DRG) during pain and relief. Total RNA from the DRG revealed a sexually dimorphic expression for injury and relief caused by COX-2 inhibition. Of note, both males and females experience increased expression of activating transcription factor 3 (Atf3), however, only the female DRG shows decreased expression following drug treatment. Alternatively, S100A8 and S100A9 expression appear to play a sex specific role in relief in males. The sex differences in RNA expression reveal that comparable behavior does not necessitate the same gene expression.


Assuntos
Neuralgia , Caracteres Sexuais , Feminino , Humanos , Masculino , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , RNA-Seq , Medicina de Precisão , Neuralgia/tratamento farmacológico , Neuralgia/genética , Neuralgia/metabolismo , Hiperalgesia/tratamento farmacológico , Hiperalgesia/genética , Hiperalgesia/metabolismo , Expressão Gênica , Inflamação/tratamento farmacológico , Inflamação/genética , Inflamação/metabolismo , RNA/metabolismo , Gânglios Espinais/metabolismo
8.
J Neuroinflammation ; 18(1): 299, 2021 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-34949179

RESUMO

BACKGROUND: The incidence of diabetes and diabetic peripheral neuropathy continues to rise, and studies have shown that macrophages play an important role in their pathogenesis. To date, macrophage tracking has largely been achieved using genetically-encoded fluorescent proteins. Here we present a novel two-color fluorescently labeled perfluorocarbon nanoemulsion (PFC-NE) designed to monitor phagocytic macrophages in diabetic neuropathy in vitro and in vivo using non-invasive near-infrared fluorescent (NIRF) imaging and fluorescence microscopy. METHODS: Presented PFC-NEs were formulated with perfluorocarbon oil surrounded by hydrocarbon shell carrying two fluorescent dyes and stabilized with non-ionic surfactants. In vitro assessment of nanoemulsions was performed by measuring fluorescent signal stability, colloidal stability, and macrophage uptake and subsequent viability. The two-color PFC-NE was administered to Leprdb/db and wild-type mice by tail vein injection, and in vivo tracking of the nanoemulsion was performed using both NIRF imaging and confocal microscopy to assess its biodistribution within phagocytic macrophages along the peripheral sensory apparatus of the hindlimb. RESULTS: In vitro experiments show two-color PFC-NE demonstrated high fluorescent and colloidal stability, and that it was readily incorporated into RAW 264.7 macrophages. In vivo tracking revealed distribution of the two-color nanoemulsion to macrophages within most tissues of Leprdb/db and wild-type mice which persisted for several weeks, however it did not cross the blood brain barrier. Reduced fluorescence was seen in sciatic nerves of both Leprdb/db and wild-type mice, implying that the nanoemulsion may also have difficulty crossing an intact blood nerve barrier. Additionally, distribution of the nanoemulsion in Leprdb/db mice was reduced in several tissues as compared to wild-type mice. This reduction in biodistribution appears to be caused by the increased number of adipose tissue macrophages in Leprdb/db mice. CONCLUSIONS: The nanoemulsion in this study has the ability to identify phagocytic macrophages in the Leprdb/db model using both NIRF imaging and fluorescence microscopy. Presented nanoemulsions have the potential for carrying lipophilic drugs and/or fluorescent dyes, and target inflammatory macrophages in diabetes. Therefore, we foresee these agents becoming a useful tool in both imaging inflammation and providing potential treatment in diabetic peripheral neuropathy.


Assuntos
Neuropatias Diabéticas/patologia , Macrófagos/patologia , Nanoestruturas , Tecido Adiposo/patologia , Animais , Emulsões , Corantes Fluorescentes , Fluorocarbonos , Masculino , Camundongos , Microscopia , Doenças do Sistema Nervoso Periférico/patologia , Fagocitose , Receptores para Leptina/genética , Espectroscopia de Luz Próxima ao Infravermelho , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA