Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 12(1)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36671005

RESUMO

Sphingolipids are bioactive molecules that play either pro- and anti-atherogenic roles in the formation and maturation of atherosclerotic plaques. Among SLs, ceramide and sphingosine-1-phosphate showed antithetic properties in regulating various molecular mechanisms and have emerged as novel potential targets for regulating the development of atherosclerosis. In particular, maintaining the balance of the so-called ceramide/S1P rheostat is important to prevent the occurrence of endothelial dysfunction, which is the trigger for the entire atherosclerotic process and is strongly associated with increased oxidative stress. In addition, these two sphingolipids, together with many other sphingolipid mediators, are directly involved in the progression of atherogenesis and the formation of atherosclerotic plaques by promoting the oxidation of low-density lipoproteins (LDL) and influencing the vascular smooth muscle cell phenotype. The modulation of ceramide and S1P levels may therefore allow the development of new antioxidant therapies that can prevent or at least impair the onset of atherogenesis, which would ultimately improve the quality of life of patients with coronary artery disease and significantly reduce their mortality.

2.
Int J Mol Sci ; 23(21)2022 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-36361941

RESUMO

Brugada Syndrome (BrS) is an inherited arrhythmogenic disorder with an increased risk of sudden cardiac death. Recent evidence suggests that BrS should be considered as an oligogenic or polygenic condition. Mutations in genes associated with BrS are found in about one-third of patients and they mainly disrupt the cardiac sodium channel NaV1.5, which is considered the main cause of the disease. However, voltage-gated channel's activity could be impacted by post-translational modifications such as sialylation, but their role in BrS remains unknown. Thus, we analyzed high risk BrS patients (n = 42) and healthy controls (n = 42) to assess an involvement of sialylation in BrS. Significant alterations in gene expression and protein sialylation were detected in Peripheral Blood Mononuclear Cells (PBMCs) from BrS patients. These changes were significantly associated with the phenotypic expression of the disease, as the size of the arrhythmogenic substrate and the duration of epicardial electrical abnormalities. Moreover, protein desialylation caused a reduction in the sodium current in an in vitro NaV1.5-overexpressing model. Dysregulation of the sialylation machinery provides definitive evidence that BrS affects extracardiac tissues, suggesting an underlying cause of the disease. Moreover, detection of these changes at the systemic level and their correlation with the clinical phenotype hint at the existence of a biomarker signature for BrS.


Assuntos
Síndrome de Brugada , Humanos , Síndrome de Brugada/diagnóstico , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Leucócitos Mononucleares/metabolismo , Fenótipo , Mutação , Eletrocardiografia
3.
Int J Mol Sci ; 22(11)2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34071419

RESUMO

Interleukin (IL)-33 is a member of the interleukin (IL)-1 family of cytokines linked to the development of inflammatory conditions and cancer in the gastrointestinal tract. This study is designed to investigate whether IL-33 has a direct effect on human gastric epithelial cells (GES-1), the human gastric adenocarcinoma cell line (AGS), and the gastric carcinoma cell line (NCI-N87) by assessing its role in the regulation of cell proliferation, migration, cell cycle, and apoptosis. Cell cycle regulation was also determined in ex vivo gastric cancer samples obtained during endoscopy and surgical procedures. Cell lines and tissue samples underwent stimulation with rhIL-33. Proliferation was assessed by XTT and CFSE assays, migration by wound healing assay, and apoptosis by caspase 3/7 activity assay and annexin V assay. Cell cycle was analyzed by means of propidium iodine assay, and gene expression regulation was assessed by RT-PCR profiling. We found that IL-33 has an antiproliferative and proapoptotic effect on cancer cell lines, and it can stimulate proliferation and reduce apoptosis in normal epithelial cell lines. These effects were also confirmed by the analysis of cell cycle gene expression, which showed a reduced expression of pro-proliferative genes in cancer cells, particularly in genes involved in G0/G1 and G2/M checkpoints. These results were confirmed by gene expression analysis on bioptic and surgical specimens. The aforementioned results indicate that IL-33 may be involved in cell proliferation in an environment- and cell-type-dependent manner.


Assuntos
Proliferação de Células/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Interleucina-33/farmacologia , Proteínas Recombinantes/farmacologia , Neoplasias Gástricas/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Caspase 7/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/genética , Linhagem Celular , Linhagem Celular Tumoral , Células Epiteliais/metabolismo , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Interleucina-33/genética , Masculino , Pessoa de Meia-Idade , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia
4.
Cell Death Dis ; 12(5): 435, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33934122

RESUMO

Hypoxia-induced miR-210 is a crucial component of the tissue response to ischemia, stimulating angiogenesis and improving tissue regeneration. Previous analysis of miR-210 impact on the transcriptome in a mouse model of hindlimb ischemia showed that miR-210 regulated not only vascular regeneration functions, but also inflammation. To investigate this event, doxycycline-inducible miR-210 transgenic mice (Tg-210) and anti-miR-210 LNA-oligonucleotides were used. It was found that global miR-210 expression decreased inflammatory cells density and macrophages accumulation in the ischemic tissue. To dissect the underpinning cell mechanisms, Tg-210 mice were used in bone marrow (BM) transplantation experiments and chimeric mice underwent hindlimb ischemia. MiR-210 overexpression in the ischemic tissue was sufficient to increase capillary density and tissue repair, and to reduce inflammation in the presence of Wt-BM infiltrating cells. Conversely, when Tg-210-BM cells migrated in a Wt ischemic tissue, dysfunctional angiogenesis, inflammation, and impaired tissue repair, accompanied by fibrosis were observed. The fibrotic regions were positive for α-SMA, Vimentin, and Collagen V fibrotic markers and for phospho-Smad3, highlighting the activation of TGF-ß1 pathway. Identification of Tg-210 cells by in situ hybridization showed that BM-derived cells contributed directly to fibrotic areas, where macrophages co-expressing fibrotic markers were observed. Cell cultures of Tg-210 BM-derived macrophages exhibited a pro-fibrotic phenotype and were enriched with myofibroblast-like cells, which expressed canonical fibrosis markers. Interestingly, inhibitors of TGF-ß type-1-receptor completely abrogated this pro-fibrotic phenotype. In conclusion, a context-dependent regulation by miR-210 of the inflammatory response was identified. miR-210 expression in infiltrating macrophages is associated to improved angiogenesis and tissue repair when the ischemic recipient tissue also expresses high levels of miR-210. Conversely, when infiltrating an ischemic tissue with mismatched miR-210 levels, macrophages expressing high miR-210 levels display a pro-fibrotic phenotype, leading to impaired tissue repair, fibrosis, and dysfunctional angiogenesis.


Assuntos
Fibrose/patologia , Membro Posterior/irrigação sanguínea , Inflamação/metabolismo , Isquemia/patologia , MicroRNAs/metabolismo , Doença Aguda , Animais , Transplante de Medula Óssea , Fibrose/genética , Fibrose/metabolismo , Isquemia/genética , Isquemia/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética
6.
Biochem J ; 477(17): 3401-3415, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32869836

RESUMO

Cardiac fibrosis is a key physiological response to cardiac tissue injury to protect the heart from wall rupture. However, its progression increases heart stiffness, eventually causing a decrease in heart contractility. Unfortunately, to date, no efficient antifibrotic therapies are available to the clinic. This is primarily due to the complexity of the process, which involves several cell types and signaling pathways. For instance, the transforming growth factor beta (TGF-ß) signaling pathway has been recognized to be vital for myofibroblasts activation and fibrosis progression. In this context, complex sphingolipids, such as ganglioside GM3, have been shown to be directly involved in TGF-ß receptor 1 (TGF-R1) activation. In this work, we report that an induced up-regulation of sialidase Neu3, a glycohydrolytic enzyme involved in ganglioside cell homeostasis, can significantly reduce cardiac fibrosis in primary cultures of human cardiac fibroblasts by inhibiting the TGF-ß signaling pathway, ultimately decreasing collagen I deposition. These results support the notion that modulating ganglioside GM3 cell content could represent a novel therapeutic approach for cardiac fibrosis, warranting for further investigations.


Assuntos
Fibroblastos/metabolismo , Gangliosídeo G(M3)/metabolismo , Regulação Enzimológica da Expressão Gênica , Miocárdio/metabolismo , Neuraminidase/biossíntese , Regulação para Cima , Fibroblastos/patologia , Fibrose , Humanos , Miocárdio/patologia , Receptor do Fator de Crescimento Transformador beta Tipo I/metabolismo
7.
Stem Cells Int ; 2018: 4706943, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30210549

RESUMO

Gangliosides, the sialic acid-conjugated glycosphingolipids present in the lipid rafts, have been recognized as important regulators of cell proliferation, migration, and apoptosis. Due to their peculiar localization in the cell membrane, they modulate the activity of several key cell receptors, and increasing evidence supports their involvement also in stem cell differentiation. In this context, herein we report the role played by the ganglioside GM1 in the osteogenic differentiation of human tendon stem cells (hTSCs). In particular, we found an increase of GM1 levels during osteogenesis that is instrumental for driving the process. In fact, supplementation of the ganglioside in the medium significantly increased the osteogenic differentiation capability of hTSCs. Mechanistically, we found that GM1 supplementation caused a reduction in the phosphorylation of the platelet-derived growth factor receptor-ß (PDGFR-ß), which is a known inhibitor of osteogenic commitment. These results were further corroborated by the observation that GM1 supplementation was able to revert the inhibitory effects on osteogenesis when the process was inhibited with exogenous PDGF.

8.
Endocr Relat Cancer ; 25(7): 761-771, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29724878

RESUMO

Parathyroid tumors deregulate microRNAs belonging to the two clusters on the chromosome 19, the C19MC and miR-371-373 clusters. Here, we report that the embryonic miR-372 is aberrantly expressed in half of parathyroid adenomas (PAds) in most of atypical adenomas and carcinomas (n = 15). Through in situ hybridization, we identified that miR-372-positive parathyroid tumor cells were scattered throughout the tumor parenchyma. In PAd-derived cells, ectopic miR-372 inhibited the expression of its targets CDKN1A/p21 and LATS2 at both mRNA and protein levels. Although the viability of parathyroid cells was not affected by miR-372 overexpression, the miRNA blunted camptothecin-induced apoptosis in primary PAd-derived cultures. miR-372 overexpression in parathyroid tumor cells increased parathormone (PTH) mRNA levels, and it positively correlated in vivo with circulating PTH levels. Conversely, the parathyroid-specific genes TBX1 and GCM2 were not affected by miR-372 mimic transfection. Finally, miR-372 dampened the Wnt pathway in parathyroid tumor cells through DKK1 upregulation. In conclusion, miR-372 is a novel mechanism exploited by a subset of parathyroid tumor cells to partially decrease sensitivity to apoptosis, to increase PTH synthesis and to deregulate Wnt signaling.


Assuntos
MicroRNAs/biossíntese , Neoplasias das Paratireoides/genética , Apoptose/genética , Inibidor de Quinase Dependente de Ciclina p21/genética , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias das Paratireoides/metabolismo , Neoplasias das Paratireoides/patologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Supressoras de Tumor/genética , Via de Sinalização Wnt
9.
Stem Cells Int ; 2018: 9468085, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29713352

RESUMO

Adult stem cell-based therapeutic approaches for tissue regeneration have been proposed for several years. However, adult stem cells are usually limited in number and difficult to be expanded in vitro, and they usually tend to quickly lose their potency with passages, as they differentiate and become senescent. Culturing stem cells under reduced oxygen tensions (below 21%) has been proposed as a tool to increase cell proliferation, but many studies reported opposite effects. In particular, cell response to hypoxia seems to be very stem cell type specific. Nonetheless, it is clear that a major role in this process is played by the hypoxia inducible factor (HIF), the master regulator of cell response to oxygen deprivation, which affects cell metabolism and differentiation. Herein, we report that a chemical activation of HIF in human tendon stem cells reduces their proliferation and inhibits their differentiation in a reversible and dose-dependent manner. These results support the notion that hypoxia, by activating HIF, plays a crucial role in preserving stem cells in an undifferentiated state in the "hypoxic niches" present in the tissue in which they reside before migrating in more oxygenated areas to heal a damaged tissue.

10.
Lab Invest ; 97(12): 1488-1499, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28920943

RESUMO

Transcription factors active in embryonic parathyroid cells can be maintained in adult parathyroids and be involved in tumorigenesis. TBX1, the candidate gene of 22q11.2-DiGeorge syndrome, which includes congenital hypoparathyroidism, is involved in parathyroid embryogenesis. The study aimed to investigate expression, function, and regulation of the parathyroid embryonic transcription factor TBX1 in human parathyroid adult normal and tumor tissues. TBX1 transcripts were detected in normal parathyroids and were deregulated in parathyroid tumors. Using immunohistochemistry, TBX1 protein was detected, mainly at the nuclear level, in a consistent proportion of cells in normal adult parathyroids, whereas TBX1 immunoreactivity was absent in fetal parathyroids. TBX1-expressing cells were markedly reduced in about a half of adenomas (PAds) and two-thirds of carcinomas and the proportion of TBX1-expressing cells negatively correlated with the serum albumin-corrected calcium levels in the analyzed tumors. Moreover, a subset of TBX1-expressing tumor cells coexpressed PTH. TBX1 silencing in HEK293 cells, expressing endogenous TBX1, increased the proportion of cells in the G0/G1 phase of cell cycle; concomitantly, CDKN1A/p21 and CDKN2A/p16 transcripts increased and ID1 mRNA levels decreased. TBX1 silencing exerted similar effects in PAd-derived cells, suggesting cell cycle arrest. Moreover, in PAd-derived cells GCM2 and PTH mRNA levels were unaffected by TBX1 deficiency, whereas it was associated with reduction of WNT5A, an antagonist of canonical WNT/ß-catenin pathway. WNT/ß-catenin activation by lithium chloride inhibited TBX1 expression levels both in HEK293 and PAd-derived cells. In conclusion, TBX1 is expressed in adult parathyroid cells and deregulated in parathyroid tumors, where TBX1 deficiency may potentially contribute to the low proliferative nature of parathyroid tumors.


Assuntos
Glândulas Paratireoides/metabolismo , Neoplasias das Paratireoides/metabolismo , Proteínas com Domínio T , Ciclo Celular , Feminino , Feto , Inativação Gênica , Células HEK293 , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo , Proteínas com Domínio T/fisiologia
11.
BMC Complement Altern Med ; 16: 293, 2016 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-27538432

RESUMO

BACKGROUND: Current clinical procedures for rotator cuff tears need to be improved, as a high rate of failure is still observed. Therefore, new approaches have been attempted to stimulate self-regeneration, including biophysical stimulation modalities, such as low-frequency pulsed electromagnetic fields, which are alternative and non-invasive methods that seem to produce satisfying therapeutic effects. While little is known about their mechanism of action, it has been speculated that they may act on resident stem cells. Thus, the purpose of this study was to evaluate the effects of a pulsed electromagnetic field (PST®) on human tendon stem cells (hTSCs) in order to elucidate the possible mechanism of the observed therapeutic effects. METHODS: hTSCs from the rotator cuff were isolated from tendon biopsies and cultured in vitro. Then, cells were exposed to a 1-h PST® treatment and compared to control untreated cells in terms of cell morphology, proliferation, viability, migration, and stem cell marker expression. RESULTS: Exposure of hTSCs to PST® did not cause any significant changes in proliferation, viability, migration, and morphology. Instead, while stem cell marker expression significantly decreased in control cells during cell culturing, PST®-treated cells did not have a significant reduction of the same markers. CONCLUSIONS: While PST® did not have significant effects on hTSCs proliferation, the treatment had beneficial effects on stem cell marker expression, as treated cells maintained a higher expression of these markers during culturing. These results support the notion that PST® treatment may increase the patient stem cell regenerative potential.


Assuntos
Magnetoterapia , Células-Tronco , Tendões/citologia , Fenômenos Fisiológicos Celulares/efeitos da radiação , Células Cultivadas , Humanos , Células-Tronco/citologia , Células-Tronco/efeitos da radiação
12.
Stem Cells Int ; 2016: 4373410, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27057170

RESUMO

Increasing the success rate of rotator cuff healing remains tremendous challenge. Among many approaches, the possibility of activating resident stem cells in situ, without the need to isolate them from biopsies, could represent valuable therapeutic strategy. Along this line, it has been recently demonstrated that lipoaspirate product, Lipogems, contains and produces growth-factors that may activate resident stem cells. In this study, human tendon stem cells (hTSCs) from the rotator cuff were cocultured in a transwell system with the Lipogems lipoaspirate product and compared to control untreated cells in terms of cell proliferation, morphology, stem cell marker and VEGF expression, and differentiation and migration capabilities. Results showed that the Lipogems product significantly increases the proliferation rate of hTSCs without altering their stemness and differentiation capability. Moreover, treated cells increase the expression of VEGF, which is crucial for the neovascularization of the tissue during the healing process. Overall, this study supports that directly activating hTSCs with the Lipogems lipoaspirate could represent a new practical therapeutic approach. In fact, obtaining a lipoaspirate is easier, safer, and more cost-effective than harvesting cells from tendon or bone marrow biopsies, expanding them in GMP facility and then reinjecting them in the patient.

13.
BMC Nephrol ; 15: 102, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24986359

RESUMO

BACKGROUND: Adenine phosphoribosyltransferase deficiency (APRTD) is an under estimated genetic form of kidney stones and/or kidney failure, characterized by intratubular precipitation of 2,8-dihydroxyadenine crystals (2,8-DHA). Currently, five pathologic allelic variants have been identified as responsible of the complete inactivation of APRT protein. CASE PRESENTATION: In this study, we report a novel nonsense mutation of the APRT gene from a 47- year old Italian patient. The mutation, localized in the exon 5, leads to the replacement of a cytosine with a thymine (g.2098C > T), introducing a stop codon at amino acid position 147 (p.Gln147X).This early termination was deleterious for the enzyme structural and functional integrity, as demonstrated by the structure analysis and the activity assay of the mutant APRT protein. CONCLUSION: These data revealed that the p.Gln147X mutation in APRT gene might be a new cause of APRT disease.


Assuntos
Adenina Fosforribosiltransferase/deficiência , Adenina Fosforribosiltransferase/genética , Códon sem Sentido/genética , Erros Inatos do Metabolismo/diagnóstico , Erros Inatos do Metabolismo/genética , Urolitíase/diagnóstico , Urolitíase/genética , Adenina Fosforribosiltransferase/química , Humanos , Masculino , Pessoa de Meia-Idade , Estrutura Secundária de Proteína
14.
J Lipid Res ; 55(3): 549-60, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24449473

RESUMO

Owing to their exposure on the cell surface and the possibility of being directly recognized with specific antibodies, glycosphingolipids have aroused great interest in the field of stem cell biology. In the search for specific markers of the differentiation of human bone marrow mesenchymal stem cells (hBMSCs) toward osteoblasts, we studied their glycosphingolipid pattern, with particular attention to gangliosides. After lipid extraction and fractionation, gangliosides, metabolically (3)H-labeled in the sphingosine moiety, were separated by high-performance TLC and chemically characterized by MALDI MS. Upon induction of osteogenic differentiation, a 3-fold increase of ganglioside GD1a was observed. Therefore, the hypothesis of GD1a involvement in hBMSCs commitment toward the osteogenic phenotype was tested by comparison of the osteogenic propensity of GD1a-highly expressing versus GD1a-low expressing hBMSCs and direct addition of GD1a in the differentiation medium. It was found that either the high expression of GD1a in hBMSCs or the addition of GD1a in the differentiation medium favored osteogenesis, providing a remarkable increase of alkaline phosphatase. It was also observed that ganglioside GD2, although detectable in hBMSCs by immunohistochemistry with an anti-GD2 antibody, could not be recognized by chemical analysis, likely reflecting a case, not uncommon, of molecular mimicry.


Assuntos
Biomarcadores/metabolismo , Diferenciação Celular , Gangliosídeos/metabolismo , Células-Tronco/metabolismo , Fosfatase Alcalina/genética , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Células Cultivadas , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Derme/citologia , Relação Dose-Resposta a Droga , Fibroblastos/citologia , Fibroblastos/metabolismo , Citometria de Fluxo , Gangliosídeos/farmacologia , Expressão Gênica/efeitos dos fármacos , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Osteoblastos/citologia , Osteoblastos/metabolismo , Osteogênese/efeitos dos fármacos , Osteogênese/genética , Osteopontina/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Esfingolipídeos/metabolismo , Células-Tronco/citologia
15.
Am J Sports Med ; 41(7): 1653-64, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23393078

RESUMO

BACKGROUND: Stem cell therapy is expected to offer new alternatives to the traditional therapies of rotator cuff tendon tears. In particular, resident, tissue-specific, adult stem cells seem to have a higher regenerative potential for the tissue where they reside. HYPOTHESIS: Rotator cuff tendon and long head of the biceps tendon possess a resident stem cell population that, when properly stimulated, may be induced to proliferate, thus being potentially usable for tendon regeneration. STUDY DESIGN: Controlled laboratory study. METHODS: Human tendon samples from the supraspinatus and the long head of the biceps were collected during rotator cuff tendon surgeries from 26 patients, washed with phosphate-buffered saline, cut into small pieces, and digested with collagenase type I and dispase. After centrifugation, cell pellets were resuspended in appropriate culture medium and plated. Adherent cells were cultured, phenotypically characterized, and then compared with human bone marrow stromal cells (BMSCs), as an example of adult stem cells, and human dermal fibroblasts, as normal proliferating cells with no stem cell properties. RESULTS: Two new adult stem cell populations from the supraspinatus and long head of the biceps tendons were isolated, characterized, and cultured in vitro. Cells showed adult stem cell characteristics (ie, they were self-renewing in vitro, clonogenic, and multipotent), as they could be induced to differentiate into different cell types--namely, osteoblasts, adipocytes, and skeletal muscle cells. CONCLUSION: This work demonstrated that human rotator cuff tendon stem cells and human long head of the biceps tendon stem cells can be isolated and possess a high regenerative potential, which is comparable with that of BMSCs. Moreover, comparative analysis of the sphingolipid pattern of isolated cells with that of BMSCs and fibroblasts revealed the possibility of using this class of lipids as new possible markers of the cell differentiation status. CLINICAL RELEVANCE: Rotator cuff and long head of the biceps tendons contain a stem cell population that can proliferate in vitro and could constitute an easily accessible stem cell source to develop novel therapies for tendon regeneration.


Assuntos
Células-Tronco Adultas/citologia , Diferenciação Celular , Células-Tronco Multipotentes/citologia , Manguito Rotador/citologia , Células-Tronco Adultas/fisiologia , Idoso , Diferenciação Celular/fisiologia , Matriz Extracelular/fisiologia , Feminino , Homeostase/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Células-Tronco Multipotentes/fisiologia , Esfingolipídeos/fisiologia
16.
J Cell Biochem ; 113(10): 3207-17, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22615034

RESUMO

The synthetic purine reversine has been shown to possess a dual activity as it promotes the de-differentiation of adult cells, including fibroblasts, into stem-cell-like progenitors, but it also induces cell growth arrest and ultimately cell death of cancer cells, suggesting its possible application as an anti-cancer agent. Aim of this study was to investigate the mechanism underneath reversine selectivity in inducing cell death of cancer cells by a comparative analysis of its effects on several tumor cells and normal dermal fibroblasts. We found that reversine is lethal for all cancer cells studied as it induces cell endoreplication, a process that malignant cells cannot effectively oppose due to aberrations in cell cycle checkpoints. On the other hand, normal cells, like dermal fibroblasts, can control reversine activity by blocking the cell cycle, entering a reversible quiescent state. However, they can be induced to become sensitive to the molecule when key cell cycle proteins, e.g., p53, are silenced.


Assuntos
Antineoplásicos/farmacologia , Morfolinas/farmacologia , Purinas/farmacologia , Proteína Supressora de Tumor p53/metabolismo , Benzotiazóis/farmacologia , Western Blotting , Caspases/metabolismo , Pontos de Checagem do Ciclo Celular , Morte Celular , Desdiferenciação Celular , Proliferação de Células , Forma Celular/efeitos dos fármacos , Sobrevivência Celular , Endorreduplicação , Ativação Enzimática , Fibroblastos/efeitos dos fármacos , Fibrossarcoma/genética , Fibrossarcoma/metabolismo , Fibrossarcoma/patologia , Citometria de Fluxo , Inativação Gênica , Células HeLa , Humanos , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Tolueno/análogos & derivados , Tolueno/farmacologia , Proteína Supressora de Tumor p53/antagonistas & inibidores , Proteína Supressora de Tumor p53/genética
17.
PLoS One ; 7(4): e34395, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22496798

RESUMO

The identification of new markers, the expression of which defines new phenotipically and functionally distinct cell subsets, is a main objective in cell biology. We have addressed the issue of identifying new cell specific markers with a reverse proteomic approach whereby approximately 1700 human open reading frames encoding proteins predicted to be transmembrane or secreted have been selected in silico for being poorly known, cloned and expressed in bacteria. These proteins have been purified and used to immunize mice with the aim of obtaining polyclonal antisera mostly specific for linear epitopes. Such a library, made of about 1600 different polyclonal antisera, has been obtained and screened by flow cytometry on cord blood derived CD34+CD45dim cells and on peripheral blood derived mature lymphocytes (PBLs). We identified three new proteins expressed by fractions of CD34+CD45dim cells and eight new proteins expressed by fractions of PBLs. Remarkably, we identified proteins the presence of which had not been demonstrated previously by transcriptomic analysis. From the functional point of view, looking at new proteins expressed on CD34+CD45dim cells, we identified one cell surface protein (MOSC-1) the expression of which on a minority of CD34+ progenitors marks those CD34+CD45dim cells that will go toward monocyte/granulocyte differentiation. In conclusion, we show a new way of looking at the membranome by assessing expression of generally neglected proteins with a library of polyclonal antisera, and in so doing we have identified new potential subsets of hematopoietic progenitors and of mature PBLs.


Assuntos
Biomarcadores/análise , Sangue Fetal/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Imunoglobulina G/imunologia , Proteínas de Membrana/imunologia , Proteínas de Membrana/metabolismo , Proteômica , Proteínas Recombinantes/imunologia , Animais , Especificidade de Anticorpos , Antígenos CD34/metabolismo , Diferenciação Celular , Sangue Fetal/citologia , Sangue Fetal/imunologia , Citometria de Fluxo , Biblioteca Gênica , Células HeLa , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/imunologia , Humanos , Imunização , Imunoglobulina G/genética , Camundongos , Análise Serial de Proteínas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA