Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Thromb Haemost ; 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38395360

RESUMO

BACKGROUND: Extracellular traps formed by neutrophils (NETs) and eosinophils (EETs) have been described in coronary thrombi, contributing to thrombus stability. A key mechanism during NET formation is histone modification by the enzyme PAD4. Citrullinated histones, the product of PAD4 activity, are often attributed to neutrophils. Eosinophils also express high levels of PAD4. OBJECTIVES: We aimed to explore the contribution of PAD4 to EET formation. METHODS: We performed immunohistological analyses on thrombi, including a large, intact, and eosinophil-containing thrombus retrieved from the right coronary artery using an aspiration catheter and stroke thrombi from thrombectomy retrieval. We studied eosinophils for their capability to form PAD4-dependent EETs in response to strong ET-inducing agonists as well as activated platelets and bacteria. RESULTS: Histopathology and immunofluorescence microscopy identified a coronary thrombus rich in platelets and neutrophils, with distinct areas containing von Willebrand factor and citrullinated histone H3 (H3Cit). Eosinophils were also identified in leukocyte-rich areas. The majority of the H3Cit+ signal colocalized with myeloperoxidase, but some colocalized with eosinophil peroxidase, indicating EETs. Eosinophils isolated from healthy volunteers produced H3Cit+ EETs, indicating an involvement of PAD4 activity. The selective PAD4 inhibitor GSK484 blocked this process, supporting PAD4 dependence of H3Cit+ EET release. Citrullinated histones were also present in EETs produced in response to live Staphylococci. However, limited evidence for EETs was found in mouse models of venous thrombosis or infective endocarditis. CONCLUSION: As in NETosis, PAD4 can catalyze the formation of EETs. Inhibition of PAD4 decreases EET formation, supporting the future utility of PAD4 inhibitors as possible antithrombotic agents.

2.
Physiol Genomics ; 56(2): 167-178, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38047311

RESUMO

Heart failure is a major clinical problem, with treatments involving medication, devices, and emerging neuromodulation therapies such as vagus nerve stimulation (VNS). Considering the ongoing interest in using VNS to treat cardiovascular disease, it is important to understand the genetic and molecular changes developing in the heart in response to this form of autonomic neuromodulation. This experimental animal (rat) study investigated the immediate transcriptional response of the ventricular myocardium to selective stimulation of vagal efferent activity using an optogenetic approach. Vagal preganglionic neurons in the dorsal motor nucleus of the vagus nerve were genetically targeted to express light-sensitive chimeric channelrhodopsin variant ChIEF and stimulated using light. RNA sequencing of the left ventricular myocardium identified 294 differentially expressed genes (false discovery rate < 0.05). Qiagen Ingenuity Pathway Analysis (IPA) highlighted 118 canonical pathways that were significantly modulated by vagal activity, of which 14 had a z score of ≥2/≤-2, including EIF-2, IL-2, integrin, and NFAT-regulated cardiac hypertrophy. IPA revealed the effect of efferent vagus stimulation on protein synthesis, autophagy, fibrosis, autonomic signaling, inflammation, and hypertrophy. IPA further predicted that the identified differentially expressed genes were the targets of 50 upstream regulators, including transcription factors (e.g., MYC and NRF1) and microRNAs (e.g., miR-335-3p and miR-338-3p). These data demonstrate that the vagus nerve has a major impact on the myocardial expression of genes involved in the regulation of key biological pathways. The transcriptional response of the ventricular myocardium induced by stimulation of vagal efferents is consistent with the beneficial effect of maintained/increased vagal activity on the heart.NEW & NOTEWORTHY This experimental animal study investigated the immediate transcriptional response of the ventricular myocardium to selective stimulation of vagal efferent activity. Vagal stimulation induced significant transcriptional changes in the heart involving the pathways controlling autonomic signaling, inflammation, fibrosis, and hypertrophy. This study provides the first direct evidence that myocardial gene expression is modulated by the activity of the autonomic nervous system.


Assuntos
MicroRNAs , Estimulação do Nervo Vago , Ratos , Animais , Frequência Cardíaca , Coração , MicroRNAs/genética , Hipertrofia , Inflamação , Fibrose
3.
Kidney Int Rep ; 8(6): 1231-1238, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37284684

RESUMO

Introduction: Through the production of prostacyclin, cyclooxygenase (COX)-2 protects the cardiorenal system. Asymmetric dimethylarginine (ADMA), is a biomarker of cardiovascular and renal disease. Here we determined the relationship between COX-2/prostacyclin, ADMA, and renal function in mouse and human models. Methods: We used plasma from COX-2 or prostacyclin synthase knockout mice and from a unique individual lacking COX-derived prostaglandins (PGs) because of a loss of function mutation in cytosolic phospholipase A2 (cPLA2), before and after receiving a cPLA2-replete transplanted donor kidney. ADMA, arginine, and citrulline were measured using ultra-high performance liquid-chromatography tandem mass spectrometry. ADMA and arginine were also measured by enzyme-linked immunosorbent assay (ELISA). Renal function was assessed by measuring cystatin C by ELISA. ADMA and prostacyclin release from organotypic kidney slices were also measured by ELISA. Results: Loss of COX-2 or prostacyclin synthase in mice increased plasma levels of ADMA, citrulline, arginine, and cystatin C. ADMA, citrulline, and arginine positively correlated with cystatin C. Plasma ADMA, citrulline, and cystatin C, but not arginine, were elevated in samples from the patient lacking COX/prostacyclin capacity compared to levels in healthy volunteers. Renal function, ADMA, and citrulline were returned toward normal range when the patient received a genetically normal kidney, capable of COX/prostacyclin activity; and cystatin C positively correlated with ADMA and citrulline. Levels of ADMA and prostacyclin in conditioned media of kidney slices were not altered in tissue from COX-2 knockout mice compared to wildtype controls. Conclusion: In human and mouse models, where renal function is compromised because of loss of COX-2/PGI2 signaling, ADMA levels are increased.

4.
Arterioscler Thromb Vasc Biol ; 43(2): 267-285, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36453281

RESUMO

BACKGROUND: Infective endocarditis (IE) is characterized by an infected thrombus at the heart valves. How bacteria bypass the immune system and cause these thrombi remains unclear. Neutrophils releasing NETs (neutrophil extracellular traps) lie at this interface between host defense and coagulation. We aimed to determine the role of NETs in IE immunothrombosis. METHODS: We used a murine model of Staphylococcus aureus endocarditis in which IE is provoked on inflamed heart valves and characterized IE thrombus content by immunostaining identifying NETs. Antibody-mediated neutrophil depletion and neutrophil-selective PAD4 (peptidylarginine deiminase 4)-knockout mice were used to clarify the role of neutrophils and NETs, respectively. S. aureus mutants deficient in key virulence factors related to immunothrombosis (nucleases or staphylocoagulases) were investigated. RESULTS: Neutrophils releasing NETs were present in infected thrombi and within cellular infiltrates in the surrounding vasculature. Neutrophil depletion increased occurrence of IE, whereas neutrophil-selective impairment of NET formation did not alter IE occurrence. Absence of S. aureus nuclease, which degrades NETs, did not affect endocarditis outcome. In contrast, absence of staphylocoagulases (coagulase and von Willebrand factor binding protein) led to improved survival, decreased bacteremia, smaller infiltrates, and decreased tissue destruction. Significantly more NETs were present in these vegetations, which correlated with decreased bacteria and cell death in the adjacent vascular wall. CONCLUSIONS: Neutrophils protect against IE independent of NET release. Absence of S. aureus coagulases, but not nucleases, reduced IE severity and increased NET levels. Staphylocoagulase-induced fibrin likely hampers NETs from constraining infection and the resultant tissue damage, a hallmark of valve destruction in IE.


Assuntos
Endocardite Bacteriana , Endocardite , Armadilhas Extracelulares , Infecções Estafilocócicas , Camundongos , Animais , Neutrófilos/metabolismo , Armadilhas Extracelulares/metabolismo , Staphylococcus aureus , Tromboinflamação , Endocardite Bacteriana/prevenção & controle , Endocardite Bacteriana/metabolismo , Endocardite/metabolismo
5.
Blood Adv ; 6(23): 6028-6038, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36037520

RESUMO

The proportion of young platelets, also known as newly formed or reticulated, within the overall platelet population has been clinically correlated with adverse cardiovascular outcomes. However, our understanding of this is incomplete because of limitations in the technical approaches available to study platelets of different ages. In this study, we have developed and validated an in vivo temporal labeling approach using injectable fluorescent antiplatelet antibodies to subdivide platelets by age and assess differences in functional and molecular characteristics. With this approach, we found that young platelets (<24 hours old) in comparison with older platelets respond to stimuli with greater calcium flux and degranulation and contribute more to the formation of thrombi in vitro and in vivo. Sequential sampling confirmed this altered functionality to be independent of platelet size, with distribution of sizes of tracked platelets commensurate with the global platelet population throughout their 5-day lifespan in the circulation. The age-associated decrease in thrombotic function was accompanied by significant decreases in the surface expression of GPVI and CD31 (PECAM-1) and an increase in CD9. Platelet messenger RNA (mRNA) content also decreased with age but at different rates for individual mRNAs indicating apparent conservation of those encoding granule proteins. Our pulse-chase-type approach to define circulating platelet age has allowed timely reexamination of commonly held beliefs regarding size and reactivity of young platelets while providing novel insights into the temporal regulation of receptor and protein expression. Overall, future application of this validated tool will inform age-based platelet heterogeneity in physiology and disease.


Assuntos
Plaquetas , Trombose , Camundongos , Animais , Plaquetas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Grânulos Citoplasmáticos , Expressão Gênica , Trombose/metabolismo
6.
Pathology ; 54(6): 746-754, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35750510

RESUMO

Identification of disordered platelet function is important to guide peri-operative bleeding management as well as long term treatment and prognostic strategies in individuals with platelet bleeding disorders. Light transmission aggregometry (LTA), the current gold standard diagnostic test of platelet function is a time consuming technique almost exclusively performed in specialised laboratories and almost universally unavailable in regional centres in Australia, where there is an unmet need for access to specialised platelet function diagnostic services. 96-well plate-based aggregometry (Optimul, UK), has been utilised in research laboratories as a novel platform to investigate platelet function. We evaluated the Optimul assay at two centres in Australia, one regional and one tertiary metropolitan, to assess its feasibility as a screening test applicable to remote regional centres. Concentration-response curves were established from 45 healthy volunteers at the participating regional hospital and from 31 healthy volunteers at the tertiary institution. Optimul successfully detected anti-platelet effects in individuals taking aspirin (n=4), NSAID (n=2), clopidogrel (n=2) and dual therapy with aspirin and clopidogrel (n=1). When tested in parallel to LTA in individuals referred for the evaluation of abnormal bleeding symptoms there was overall a very good level of agreement between Optimul and LTA [Cohen's kappa (k2)=0.84], supporting its role as a useful screening tool in the assessment of platelet function. Optimul assay performance was quick and the methodology simple, requiring no specialised training or resources to be implemented at either the regional or metropolitan laboratory. Widespread implementation, particularly in regional laboratories within Australia where specialised platelet function testing is unavailable, has the potential to drastically improve the inequity of access to such services.


Assuntos
Transtornos Plaquetários , Agregação Plaquetária , Anti-Inflamatórios não Esteroides , Aspirina/farmacologia , Transtornos Plaquetários/diagnóstico , Clopidogrel/farmacologia , Humanos , Projetos Piloto , Testes de Função Plaquetária/métodos
7.
Arterioscler Thromb Vasc Biol ; 42(3): 261-276, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35109674

RESUMO

Over the past 10 years, neutrophil extracellular traps (NETs) have become widely accepted as an integral player in immunothrombosis, due to their complex interplay with both pathogens and components of the coagulation system. While the release of NETs is an attempt by neutrophils to trap pathogens and constrain infections, NETs can have bystander effects on the host by inducing uncontrolled thrombosis, inflammation, and tissue damage. From an evolutionary perspective, pathogens have adapted to bypass the host innate immune response. Staphylococcus aureus (S. aureus), in particular, proficiently overcomes NET formation using several virulence factors. Here we review mechanisms of NET formation and how these are intertwined with platelet activation, the release of endothelial von Willebrand factor, and the activation of the coagulation system. We discuss the unique ability of S. aureus to modulate NET formation and alter released NETs, which helps S. aureus to escape from the host's defense mechanisms. We then discuss how platelets and the coagulation system could play a role in NET formation in S. aureus-induced infective endocarditis, and we explain how targeting these complex cellular interactions could reveal novel therapies to treat this disease and other immunothrombotic disorders.


Assuntos
Armadilhas Extracelulares/imunologia , Armadilhas Extracelulares/microbiologia , Staphylococcus aureus/patogenicidade , Tromboinflamação/etiologia , Animais , Fatores de Coagulação Sanguínea/imunologia , Interações entre Hospedeiro e Microrganismos/imunologia , Humanos , Evasão da Resposta Imune , Camundongos , Modelos Cardiovasculares , Modelos Imunológicos , Neutrófilos/imunologia , Neutrófilos/microbiologia , Ativação Plaquetária , Infecções Estafilocócicas/complicações , Staphylococcus aureus/imunologia , Tromboinflamação/imunologia , Tromboinflamação/microbiologia , Fatores de Virulência/imunologia , Fator de von Willebrand/imunologia
8.
Front Cardiovasc Med ; 9: 1013262, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36684586

RESUMO

Thrombosis of the lung microvasculature is a characteristic of COVID-19 disease, which is observed in large excess compared to other forms of acute respiratory distress syndrome and thus suggests a trigger for thrombosis that is endogenous to the lung. Our recent work has shown that the SARS-CoV-2 Spike protein activates the cellular TMEM16F chloride channel and scramblase. Through a screening on >3,000 FDA/EMA approved drugs, we identified Niclosamide and Clofazimine as the most effective molecules at inhibiting Spike-induced TMEM16 activation. As TMEM16F plays an important role in stimulating the procoagulant activity of platelets, we investigated whether Spike directly affects platelet activation and pro-thrombotic function and tested the effect of Niclosamide and Clofazimine on these processes. Here we show that Spike, present either on the virion envelope or on the cell plasma membrane, promotes platelet activation, adhesion and spreading. Spike was active as a sole agonist or, even more effectively, by enhancing the function of known platelet activators. In particular, Spike-induced a marked procoagulant phenotype in platelets, by enhancing Ca2+ flux, phosphatidylserine externalization on the platelet outer cell membrane, and thrombin generation. Eventually, this increased thrombin-induced clot formation and retraction. Both Niclosamide and Clofazimine blocked this Spike-induced procoagulant response. These findings provide a pathogenic mechanism to explain lung thrombosis-associated with severe COVID-19 infection. We propose that Spike, present in SARS-CoV-2 virions or exposed on the surface of infected cells in the lungs, enhances the effects of inflammation and leads to local platelet stimulation and subsequent activation of the coagulation cascade. As platelet TMEM16F is central in this process, these findings reinforce the rationale of repurposing Niclosamide for COVID-19 therapy.

9.
J Thromb Haemost ; 19(12): 3095-3112, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34390534

RESUMO

BACKGROUND: Platelets circulate in the blood of healthy individuals for approximately 7-10 days regulated by finely balanced processes of production and destruction. As platelets are anucleate we reasoned that their protein composition would change as they age and that this change would be linked to alterations in structure and function. OBJECTIVE: To isolate platelets of different ages from healthy individuals to test the hypothesis that changes in protein content cause alterations in platelet structure and function. METHODS: Platelets were separated according to thiazole orange fluorescence intensity as a surrogate indicator of mRNA content and so a marker of platelet age and then subjected to proteomics, imaging, and functional assays to produce an in-depth analysis of platelet composition and function. RESULTS: Total protein content was 45 ± 5% lower in old platelets compared to young platelets. Predictive proteomic pathway analysis identified associations with 28 biological processes, notably higher hemostasis in young platelets whilst apoptosis and senescence were higher in old platelets. Further studies confirmed platelet ageing was linked to a decrease in cytoskeletal protein and associated capability to spread and adhere, a reduction in mitochondria number, and lower calcium dynamics and granule secretion. CONCLUSIONS: Our findings demonstrate changes in protein content are linked to alterations in function as platelets age. This work delineates physical and functional changes in platelets as they age and serves as a base to examine differences associated with altered mean age of platelet populations in conditions such as immune thrombocytopenia and diabetes.


Assuntos
Proteoma , Trombocitopenia , Plaquetas , Hemostasia , Humanos , Proteômica
10.
Br J Anaesth ; 127(4): 511-520, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34238546

RESUMO

BACKGROUND: Maintaining adequate oxygen delivery (DO2) after major surgery is associated with minimising organ dysfunction. Skin is particularly vulnerable to reduced DO2. We tested the hypothesis that reduced perioperative DO2 fuels inflammation in metabolically compromised skin after major surgery. METHODS: Participants undergoing elective oesophagectomy were randomised immediately after surgery to standard of care or haemodynamic therapy to achieve their individualised preoperative DO2. Abdominal punch skin biopsies were snap-frozen before and 48 h after surgery. On-line two-dimensional liquid chromatography and ultra-high-definition label-free mass spectrometry was used to characterise the skin proteome. The primary outcome was proteomic changes compared between normal (≥preoperative value before induction of anaesthesia) and low DO2 (

Assuntos
Esofagectomia/métodos , Oxigênio/administração & dosagem , Proteômica , Pele/metabolismo , Idoso , Idoso de 80 Anos ou mais , Biópsia , Método Duplo-Cego , Procedimentos Cirúrgicos Eletivos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Assistência Perioperatória/métodos , Proteínas/metabolismo
11.
Haematologica ; 106(5): 1423-1432, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32299908

RESUMO

We have identified a rare missense variant on chromosome 9, position 125145990 (GRCh37), in exon 8 in PTGS1 (the gene encoding cyclo-oxygenase 1, COX-1, the target of anti-thrombotic aspirin therapy). We report that in the homozygous state within a large consanguineous family this variant is associated with a bleeding phenotype and alterations in platelet reactivity and eicosanoid production. Western blotting and confocal imaging demonstrated that COX-1 was absent in the platelets of three family members homozygous for the PTGS1 variant but present in their leukocytes. Platelet reactivity, as assessed by aggregometry, lumi-aggregometry and flow cytometry, was impaired in homozygous family members, as were platelet adhesion and spreading. The productions of COX-derived eicosanoids by stimulated platelets were greatly reduced but there were no changes in the levels of urinary metabolites of COX-derived eicosanoids. The proband exhibited additional defects in platelet aggregation and spreading which may explain why her bleeding phenotype was slightly more severe than those of other homozygous affected relatives. This is the first demonstration in humans of the specific loss of platelet COX-1 activity and provides insight into its consequences for platelet function and eicosanoid metabolism. Notably despite the absence of thromboxane A2 (TXA2) formation by platelets, urinary TXA2 metabolites were in the normal range indicating these cannot be assumed as markers of in vivo platelet function. Results from this study are important benchmarks for the effects of aspirin upon platelet COX-1, platelet function and eicosanoid production as they define selective platelet COX-1 ablation within humans.


Assuntos
Aspirina , Testes de Função Plaquetária , Plaquetas , Ciclo-Oxigenase 1/genética , Feminino , Humanos , Agregação Plaquetária/genética , Tromboxano A2
12.
Blood ; 137(6): 830-843, 2021 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-32822477

RESUMO

Connexins oligomerise to form hexameric hemichannels in the plasma membrane that can further dock together on adjacent cells to form gap junctions and facilitate intercellular trafficking of molecules. In this study, we report the expression and function of an orphan connexin, connexin-62 (Cx62), in human and mouse (Cx57, mouse homolog) platelets. A novel mimetic peptide (62Gap27) was developed to target the second extracellular loop of Cx62, and 3-dimensional structural models predicted its interference with gap junction and hemichannel function. The ability of 62Gap27 to regulate both gap junction and hemichannel-mediated intercellular communication was observed using fluorescence recovery after photobleaching analysis and flow cytometry. Cx62 inhibition by 62Gap27 suppressed a range of agonist-stimulated platelet functions and impaired thrombosis and hemostasis. This was associated with elevated protein kinase A-dependent signaling in a cyclic adenosine monophosphate-independent manner and was not observed in Cx57-deficient mouse platelets (in which the selectivity of 62Gap27 for this connexin was also confirmed). Notably, Cx62 hemichannels were observed to function independently of Cx37 and Cx40 hemichannels. Together, our data reveal a fundamental role for a hitherto uncharacterized connexin in regulating the function of circulating cells.


Assuntos
Plaquetas/metabolismo , Conexinas/fisiologia , Animais , Comunicação Celular/fisiologia , Linhagem Celular , Conexinas/sangue , Conexinas/química , Conexinas/deficiência , Conexinas/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Junções Comunicantes/fisiologia , Hemostasia/fisiologia , Humanos , Integrinas/sangue , Megacariócitos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Modelos Moleculares , Simulação de Acoplamento Molecular , Fragmentos de Peptídeos/síntese química , Fragmentos de Peptídeos/farmacologia , Adesividade Plaquetária , Agregação Plaquetária , Conformação Proteica , Multimerização Proteica , Relação Estrutura-Atividade , Trombose/sangue
13.
Pharmacol Ther ; 217: 107624, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32640277

RESUMO

Cyclooxygenase (COX)-1 and COX-2 are centrally important enzymes within the cardiovascular system with a range of diverse, sometimes opposing, functions. Through the production of thromboxane, COX in platelets is a pro-thrombotic enzyme. By contrast, through the production of prostacyclin, COX in endothelial cells is antithrombotic and in the kidney regulates renal function and blood pressure. Drug inhibition of COX within the cardiovascular system is important for both therapeutic intervention with low dose aspirin and for the manifestation of side effects caused by nonsteroidal anti-inflammatory drugs. This review focuses on the role that COX enzymes and drugs that act on COX pathways have within the cardiovascular system and provides an in-depth resource covering COX biology and pharmacology. The review goes on to consider the role of COX in both discrete cardiovascular locations and in associated organs that contribute to cardiovascular health. We discuss the importance of, and strategies to manipulate the thromboxane: prostacyclin balance. Finally within this review the authors discuss testable COX-2-hypotheses intended to stimulate debate and facilitate future research and therapeutic opportunities within the field.


Assuntos
Sistema Cardiovascular/efeitos dos fármacos , Inibidores de Ciclo-Oxigenase/farmacologia , Prostaglandina-Endoperóxido Sintases/metabolismo , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Aspirina/farmacologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Fenômenos Fisiológicos Cardiovasculares , Ciclo-Oxigenase 1/metabolismo , Ciclo-Oxigenase 2/metabolismo , Estabilidade de Medicamentos , Células Endoteliais/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Rim/efeitos dos fármacos , Rim/metabolismo , Prostaglandinas/metabolismo , Temperatura , Tromboxanos/metabolismo , Timo/efeitos dos fármacos , Timo/metabolismo
15.
FASEB J ; 34(8): 10027-10040, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32592197

RESUMO

Aspirin prevents thrombosis by inhibiting platelet cyclooxygenase (COX)-1 activity and the production of thromboxane (Tx)A2 , a pro-thrombotic eicosanoid. However, the non-platelet actions of aspirin limit its antithrombotic effects. Here, we used platelet-COX-1-ko mice to define the platelet and non-platelet eicosanoids affected by aspirin. Mass-spectrometry analysis demonstrated blood from platelet-COX-1-ko and global-COX-1-ko mice produced similar eicosanoid profiles in vitro: for example, formation of TxA2 , prostaglandin (PG) F2α , 11-hydroxyeicosatraenoic acid (HETE), and 15-HETE was absent in both platelet- and global-COX-1-ko mice. Conversely, in vivo, platelet-COX-1-ko mice had a distinctly different profile from global-COX-1-ko or aspirin-treated control mice, notably significantly higher levels of PGI2 metabolite. Ingenuity Pathway Analysis (IPA) predicted that platelet-COX-1-ko mice would be protected from thrombosis, forming less pro-thrombotic TxA2 and PGE2 . Conversely, aspirin or lack of systemic COX-1 activity decreased the synthesis of anti-aggregatory PGI2 and PGD2 at non-platelet sites leading to predicted thrombosis increase. In vitro and in vivo thrombosis studies proved these predictions. Overall, we have established the eicosanoid profiles linked to inhibition of COX-1 in platelets and in the remainder of the cardiovascular system and linked them to anti- and pro-thrombotic effects of aspirin. These results explain why increasing aspirin dosage or aspirin addition to other drugs may lessen antithrombotic protection.


Assuntos
Aspirina/farmacologia , Plaquetas/metabolismo , Ciclo-Oxigenase 1/fisiologia , Inibidores de Ciclo-Oxigenase/farmacologia , Eicosanoides/metabolismo , Proteínas de Membrana/fisiologia , Trombose/metabolismo , Animais , Ácido Araquidônico/administração & dosagem , Plaquetas/efeitos dos fármacos , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Trombose/tratamento farmacológico , Trombose/patologia
16.
J Thromb Haemost ; 18(7): 1705-1713, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32278335

RESUMO

BACKGROUND: Endothelium-derived prostacyclin and nitric oxide elevate platelet cyclic nucleotide levels and maintain quiescence. We previously demonstrated that a synergistic relationship exists between cyclic nucleotides and P2Y12 receptor inhibition. A number of clinically approved drug classes can modulate cyclic nucleotide tone in platelets including activators of NO-sensitive guanylyl cyclase (GC) and phosphodiesterase (PDE) inhibitors. However, the doses required to inhibit platelets produce numerous side effects including headache. OBJECTIVE: We investigated using GC-activators in combination with P2Y12 receptor antagonists as a way to selectively amplify the anti-thrombotic effect of both drugs. METHODS: In vitro light transmission aggregation and platelet adhesion under flow were performed on washed platelets and platelet rich plasma. Aggregation in whole blood and a ferric chloride-induced arterial thrombosis model were also performed. RESULTS: The GC-activator BAY-70 potentiated the action of the P2Y12 receptor inhibitor prasugrel active metabolite in aggregation and adhesion studies and was associated with raised intra-platelet cyclic nucleotide levels. Furthermore, mice administered sub-maximal doses of the GC activator cinaciguat together with the PDE inhibitor dipyridamole and prasugrel, showed significant inhibition of ex vivo platelet aggregation and significantly reduced in vivo arterial thrombosis in response to injury without alteration in basal carotid artery blood flow. CONCLUSIONS: Using in vitro, ex vivo, and in vivo functional studies, we show that low dose GC activators synergize with P2Y12 inhibition to produce powerful anti-platelet effects without altering blood flow. Therefore, modulation of intra-platelet cyclic nucleotide levels alongside P2Y12 inhibition can provide a strong, focused anti-thrombotic regimen while minimizing vasodilator side effects.


Assuntos
Plaquetas , Antagonistas do Receptor Purinérgico P2Y , Animais , Camundongos , Nucleotídeos Cíclicos/farmacologia , Agregação Plaquetária , Inibidores da Agregação Plaquetária/farmacologia , Cloridrato de Prasugrel/farmacologia , Antagonistas do Receptor Purinérgico P2Y/farmacologia , Receptores Purinérgicos P2Y12
17.
Sci Rep ; 9(1): 17210, 2019 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-31748641

RESUMO

The pregnane X receptor (PXR) is a nuclear receptor (NR), involved in the detoxification of xenobiotic compounds. Recently, its presence was reported in the human vasculature and its ligands were proposed to exhibit anti-atherosclerotic effects. Since platelets contribute towards the development of atherosclerosis and possess numerous NRs, we investigated the expression of PXR in platelets along with the ability of its ligands to modulate platelet activation. The expression of PXR in human platelets was confirmed using immunoprecipitation analysis. Treatment with PXR ligands was found to inhibit platelet functions stimulated by a range of agonists, with platelet aggregation, granule secretion, adhesion and spreading on fibrinogen all attenuated along with a reduction in thrombus formation (both in vitro and in vivo). The effects of PXR ligands were observed in a species-specific manner, and the human-specific ligand, SR12813, was observed to attenuate thrombus formation in vivo in humanised PXR transgenic mice. PXR ligand-mediated inhibition of platelet function was found to be associated with the inhibition of Src-family kinases (SFKs). This study identifies acute, non-genomic regulatory effects of PXR ligands on platelet function and thrombus formation. In combination with the emerging anti-atherosclerotic properties of PXR ligands, these anti-thrombotic effects may provide additional cardio-protective benefits.


Assuntos
Plaquetas/fisiologia , Hemostasia , Ativação Plaquetária , Agregação Plaquetária , Receptor de Pregnano X/metabolismo , Trombose/patologia , Animais , Humanos , Ligantes , Camundongos , Receptores de Esteroides/metabolismo , Trombose/metabolismo , Quinases da Família src/metabolismo
18.
Circ Res ; 125(9): 847-854, 2019 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-31510878

RESUMO

RATIONALE: Endothelial cells (ECs) and platelets, which respectively produce antithrombotic prostacyclin and prothrombotic thromboxane A2, both express COX1 (cyclooxygenase1). Consequently, there has been no way to delineate any antithrombotic role for COX1-derived prostacyclin from the prothrombotic effects of platelet COX1. By contrast, an antithrombotic role for COX2, which is absent in platelets, is straightforward to demonstrate. This has resulted in an incomplete understanding of the relative importance of COX1 versus COX2 in prostacyclin production and antithrombotic protection in vivo. OBJECTIVE: We sought to identify the role, if any, of COX1-derived prostacyclin in antithrombotic protection in vivo and compare this to the established protective role of COX2. METHODS AND RESULTS: We developed vascular-specific COX1 knockout mice and studied them alongside endothelial-specific COX2 knockout mice. COX1 immunoreactivity and prostacyclin production were primarily associated with the endothelial layer of aortae; freshly isolated aortic ECs released >10-fold more prostacyclin than smooth muscle cells. Moreover, aortic prostacyclin production, the ability of aortic rings to inhibit platelet aggregation and plasma prostacyclin levels were reduced when COX1 was knocked out in ECs but not in smooth muscle cells. When thrombosis was measured in vivo after FeCl3 carotid artery injury, endothelial COX1 deletion accelerated thrombosis to a similar extent as prostacyclin receptor blockade. However, this effect was lost when COX1 was deleted from both ECs and platelets. Deletion of COX2 from ECs also resulted in a prothrombotic phenotype that was independent of local vascular prostacyclin production. CONCLUSIONS: These data demonstrate for the first time that, in healthy animals, endothelial COX1 provides an essential antithrombotic tone, which is masked when COX1 activity is lost in both ECs and platelets. These results help us define a new 2-component paradigm wherein thrombotic tone is regulated by both COX1 and COX2 through complementary but mechanistically distinct pathways.


Assuntos
Ciclo-Oxigenase 1/deficiência , Endotélio Vascular/metabolismo , Epoprostenol/metabolismo , Fibrinolíticos/metabolismo , Deleção de Genes , Proteínas de Membrana/deficiência , Agregação Plaquetária/fisiologia , Animais , Aorta/metabolismo , Ciclo-Oxigenase 1/genética , Epoprostenol/genética , Feminino , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Camundongos Transgênicos
19.
Br J Pharmacol ; 176(8): 988-999, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-29512148

RESUMO

Platelets are important players in thrombosis and haemostasis with their function being modulated by mediators in the blood and the vascular wall. Among these, eicosanoids can both stimulate and inhibit platelet reactivity. Platelet Cyclooxygenase (COX)-1-generated Thromboxane (TX)A2 is the primary prostanoid that stimulates platelet aggregation; its action is counter-balanced by prostacyclin, a product of vascular COX. Prostaglandin (PG)D2 , PGE2 and 12-hydroxyeicosatraenoic acid (HETE), or 15-HETE, are other prostanoid modulators of platelet activity, but some also play a role in carcinogenesis. Aspirin permanently inhibits platelet COX-1, underlying its anti-thrombotic and anti-cancer action. While the use of aspirin as an anti-cancer drug is increasingly encouraged, its continued use in addition to P2 Y12 receptor antagonists for the treatment of cardiovascular diseases is currently debated. Aspirin not only suppresses TXA2 but also prevents the synthesis of both known and unknown antiplatelet eicosanoid pathways, potentially lessening the efficacy of dual antiplatelet therapies. LINKED ARTICLES: This article is part of a themed section on Eicosanoids 35 years from the 1982 Nobel: where are we now? To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.8/issuetoc.


Assuntos
Aspirina/farmacologia , Plaquetas/metabolismo , Sistema Cardiovascular/metabolismo , Eicosanoides/metabolismo , Inibidores da Agregação Plaquetária/farmacologia , Animais , Plaquetas/efeitos dos fármacos , Sistema Cardiovascular/efeitos dos fármacos , Humanos
20.
Arterioscler Thromb Vasc Biol ; 37(8): 1482-1493, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28619996

RESUMO

OBJECTIVES: The liver X receptors (LXRs) and farnesoid X receptor (FXR) have been identified in human platelets. Ligands of these receptors have been shown to have nongenomic inhibitory effects on platelet activation by platelet agonists. This, however, seems contradictory with the platelet hyper-reactivity that is associated with several pathological conditions that are associated with increased circulating levels of molecules that are LXR and FXR ligands, such as hyperlipidemia, type 2 diabetes mellitus, and obesity. APPROACH AND RESULTS: We, therefore, investigated whether ligands for the LXR and FXR receptors were capable of priming platelets to the activated state without stimulation by platelet agonists. Treatment of platelets with ligands for LXR and FXR converted platelets to the procoagulant state, with increases in phosphatidylserine exposure, platelet swelling, reduced membrane integrity, depolarization of the mitochondrial membrane, and microparticle release observed. Additionally, platelets also displayed features associated with coated platelets such as P-selectin exposure, fibrinogen binding, fibrin generation that is supported by increased serine protease activity, and inhibition of integrin αIIbß3. LXR and FXR ligand-induced formation of coated platelets was found to be dependent on both reactive oxygen species and intracellular calcium mobilization, and for FXR ligands, this process was found to be dependent on cyclophilin D. CONCLUSIONS: We conclude that treatment with LXR and FXR ligands initiates coated platelet formation, which is thought to support coagulation but results in desensitization to platelet stimuli through inhibition of αIIbß3 consistent with their ability to inhibit platelet function and stable thrombus formation in vivo.


Assuntos
Benzoatos/farmacologia , Benzilaminas/farmacologia , Coagulação Sanguínea/efeitos dos fármacos , Plaquetas/efeitos dos fármacos , Isoxazóis/farmacologia , Receptores X do Fígado/agonistas , Ativação Plaquetária/efeitos dos fármacos , Inibidores da Agregação Plaquetária/farmacologia , Receptores Citoplasmáticos e Nucleares/agonistas , Plaquetas/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Micropartículas Derivadas de Células/efeitos dos fármacos , Micropartículas Derivadas de Células/metabolismo , Ciclofilinas/sangue , Relação Dose-Resposta a Droga , Fibrina/metabolismo , Fibrinogênio/metabolismo , Humanos , Ligantes , Receptores X do Fígado/sangue , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Selectina-P/sangue , Fosfatidilserinas/sangue , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/antagonistas & inibidores , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Espécies Reativas de Oxigênio/sangue , Receptores Citoplasmáticos e Nucleares/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA