Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Org Chem ; 87(20): 13427-13438, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-36075104

RESUMO

Three new single-crystal structures were isolated for picolinic acid (2), the trifluoroacetate salt of picolinic acid (1), and pyridoxal hydrochloride (3). These compounds displayed unconventional crystallographic features that must be considered when structural refinements are carried out. Thus, the generated Fourier differences map obtained with the diffraction data collected at 100 K was crucial to visualize electron densities, which were balanced by either one hydrogen atom or a hydrogen atom with an occupancy factor of 1/2 located between either two carboxylate moieties, two phenolic oxygen atoms, or two pyridinic nitrogen atoms. Moreover, NMR studies were conducted to analyze the bulk chemical composition of single crystals of 2-pyridinecarboxylic acid obtained from the gem-diol/hemiacetal forms and the polymerization products after the treatment of 2-pyridinecarboxaldehyde with TFA:H2O (1) or a diluted Cu(NO3)2 solution (2). The quantitative yield of the pyridoxal hydrochloride crystalline material (3) obtained from a diluted CuCl2 solution was exhaustively characterized by solid-state NMR methods. These methods allowed the resolution of the signals corresponding to the protons of the hydroxyl moiety of the intramolecular hemiacetal group and the phenolic hydrogen. Theoretical calculations using DFT methods were done to complement the atomic location of the hydrogen atoms obtained from the X-ray analysis.


Assuntos
Hidrogênio , Piridoxal , Cristalografia por Raios X , Piridoxal/química , Ligação de Hidrogênio , Estrutura Molecular , Prótons , Ácido Trifluoracético , Oxigênio , Nitrogênio
2.
Chempluschem ; 87(7): e202200169, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35789218

RESUMO

This work describes the synthesis of 4-(4-AcPy) and 3-acetylpyridine (3-AcPy) copper soluble complexes for the activation of hydrogen peroxide and the concomitant generation of reactive oxygen species (ROS). Given the paramagnetic effects of copper ions in the Nuclear Magnetic Resonance (NMR) lines, we aimed at demonstrating that the combination of high-resolution 2D solid-state NMR experiments, Electron Paramagnetic Resonance (EPR), single-crystal X-ray crystallography and Density Functional Theory (DFT) calculations allows a detailed study of the chemical structure of the ligands and the surrounding metal ions. The copper complexes synthesized with CuCl2 were useful for the activation of H2 O2 during which the only ROS was the hydroxyl one, as demonstrated by EPR experiments. A removal of methyl orange (MO) azo-dye higher than 85 % was achieved in 200 minutes, combining 1.7 mM of copper complexes with 60 mM of H2 O2 and 40 µM of MO.


Assuntos
Cobre , Cobre/química , Cristalografia por Raios X , Espectroscopia de Ressonância de Spin Eletrônica , Ligantes , Espécies Reativas de Oxigênio
3.
RSC Adv ; 11(33): 20216-20231, 2021 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-35479880

RESUMO

The complex chemical functionalization of aldehyde moieties in Cu(ii)- and Co(ii)-pyridinecarboxaldehyde complexes was studied. X-ray studies demonstrated that the aldehyde group (RCHO) of the four pyridine molecules is converted to dihydrogen ortho ester (RC(OCH3)(OH)2) and hemiacetal (RCH(OH)(OCH3)) moieties in both 4-pyridinecarboxaldehyde copper and cobalt complexes. In contrast, the aldehyde group is retained when the 3-pyridinecarboxaldehyde ligand is complexed with cobalt. In the different copper complexes, similar paramagnetic 1H resonance lines were obtained in the solid state; however, the connectivity with the carbon structure and the 1H vicinities were done with 2D 1H-13C HETCOR, 1H-1H SQ/DQ and proton spin diffusion (PSD) experiments. The strong paramagnetic effect exerted by the cobalt center prevented the observation of 13C NMR signals and chemical information could only be obtained from X-ray experiments. 2D PSD experiments in the solid state were useful for the proton assignments in both Cu(ii) complexes. The combination of X-ray crystallography experiments with DFT calculations together with the experimental results obtained from EPR and solid-state NMR allowed the assignment of NMR signals in pyridinecarboxaldehyde ligands coordinated with copper ions. In cases where the crystallographic information was not available, as in the case of the 3-pyridinecarboxaldehyde Cu(ii) complex, the combination of these techniques allowed not only the assignment of NMR signals but also the study of the functionalization of the substituent group.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA