Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plant Genome ; 17(1): e20365, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37415292

RESUMO

Wheat (Triticum aestivum L.) as a staple crop is closely interwoven into the development of modern society. Its influence on culture and economic development is global. Recent instability in wheat markets has demonstrated its importance in guaranteeing food security across national borders. Climate change threatens food security as it interacts with a multitude of factors impacting wheat production. The challenge needs to be addressed with a multidisciplinary perspective delivered across research, private, and government sectors. Many experimental studies have identified the major biotic and abiotic stresses impacting wheat production, but fewer have addressed the combinations of stresses that occur simultaneously or sequentially during the wheat growth cycle. Here, we argue that biotic and abiotic stress interactions, and the genetics and genomics underlying them, have been insufficiently addressed by the crop science community. We propose this as a reason for the limited transfer of practical and feasible climate adaptation knowledge from research projects into routine farming practice. To address this gap, we propose that novel methodology integration can align large volumes of data available from crop breeding programs with increasingly cheaper omics tools to predict wheat performance under different climate change scenarios. Underlying this is our proposal that breeders design and deliver future wheat ideotypes based on new or enhanced understanding of the genetic and physiological processes that are triggered when wheat is subjected to combinations of stresses. By defining this to a trait and/or genetic level, new insights can be made for yield improvement under future climate conditions.


Assuntos
Melhoramento Vegetal , Triticum , Triticum/fisiologia , Mudança Climática , Genômica/métodos , Estresse Fisiológico/genética
2.
Front Plant Sci ; 11: 824, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32760411

RESUMO

Rust diseases continuously threaten global wheat production: stem rust, leaf rust, and yellow rust caused by Puccinia graminis f. sp. tritici, Puccinia triticina, and Puccinia striiformis f. sp. tritici, respectively. Recent studies indicated that the average losses from all these three rusts reached up to 15.04 million tons per year, which is equivalent to an annual average loss of around US $2.9 billion per year. The major focus of Mexican and worldwide breeding programs is the release of rust resistant cultivars, as this is considered the best option for controlling rust diseases. In Mexico, the emphasis has been placed on genes that confer partial resistance in the adult plant stage and against a broad spectrum of rust races since the 1970s. In this study, a set of the first-generation tall varieties developed and released in the 1940s and 1950s, the first semi-dwarfs, and other releases in Mexico, all of which showed different levels of rust resistance have been phenotyped for the three rust diseases and genotyped. Results of the molecular marker detection indicated that Lr34, Lr46, Lr67, and Lr68 alone or in different gene combinations were present among the wheat cultivars. Flag leaf tip necrosis was present in all cultivars and most were positive for brown necrosis or Pseudo Black Chaff associated with the Sr2 stem rust resistance complex. The phenotypic responses to the different rust infections indicate the presence of additional slow rusting and race-specific resistance genes. The study reveals the association of the slow rusting genes with durable resistance to the three rusts including Ug99 in cultivars bred before the green revolution such as Frontera, Supremo 211, Chapingo 48, Yaqui 50, Kentana 52, Bajio 52, Bajio 53, Yaqui 53, Chapingo 53, Yaktana Tardio 54, and Mayo 54 and their descendants after intercrossing and recombination. These slow rusting genes are the backbone of the resistance in the current Mexican germplasm.

3.
Field Crops Res ; 249: 107742, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32255898

RESUMO

The effects of climate change together with the projected future demand represents a huge challenge for wheat production systems worldwide. Wheat breeding can contribute to global food security through the creation of genotypes exhibiting stress tolerance and higher yield potential. The objectives of our study were to (i) estimate the annual grain yield (GY) genetic gain of High Rainfall Wheat Yield Trials (HRWYT) grown from 2007 (15th HRWYT) to 2016 (24th HRWYT) across international environments, and (ii) determine the changes in physiological traits associated with GY genetic improvement. The GY genetic gains were estimated as genetic progress per se (GYP) and in terms of local checks (GYLC). In total, 239 international locations were classified into two groups: high- and low-rainfall environments based on climate variables and trial management practices. In the high-rainfall environment, the annual genetic gains for GYP and GYLC were 3.8 and 1.17 % (160 and 65.1 kg ha-1 yr-1), respectively. In the low-rainfall environment, the genetic gains were 0.93 and 0.73 % (40 and 33.1 kg ha-1 yr-1), for GYP and GYLC respectively. The GY of the lines included in each nursery showed a significant phenotypic correlation between high- and low-rainfall environments in all the examined years and several of the five best performing lines were common in both environments. The GY progress was mainly associated with increased grain weight (R2 = 0.35 p < 0.001), days to maturity (R2 = 0.20, p < 0.001) and grain filling period (R2 = 0.06, p < 0.05). These results indicate continuous GY genetic progress and yield stability in the HRWYT germplasm developed and distributed by CIMMYT.

4.
Front Plant Sci ; 8: 1800, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29093728

RESUMO

More than 50% of undernourished children live in Asia and more than 25% live in Africa. Coupled with an inadequate food supply, mineral deficiencies are widespread in these populations; particularly zinc (Zn) and iron (Fe) deficiencies that lead to retarded growth, adverse effects on both the immune system and an individual's cognitive abilities. Biofortification is one solution aimed at reducing the incidence of these deficiencies. To efficiently breed a biofortified wheat variety, it is important to generate knowledge of the genomic regions associated with grain Zn (GZn) and Fe (GFe) concentration. This allows for the introgression of favorable alleles into elite germplasm. In this study we evaluated two bi-parental populations of 188 recombinant inbred lines (RILs) displaying a significant range of transgressive segregation for GZn and GFe during three crop cycles in CIMMYT, Mexico. Parents of the RILs were derived from Triticum spelta L. and synthetic hexaploid wheat crosses. QTL analysis identified a number of significant QTL with a region denominated as QGZn.cimmyt-7B_1P2 on chromosome 7B explaining the largest (32.7%) proportion of phenotypic variance (PVE) for GZn and leading to an average additive effect of -1.3. The QTL with the largest average additive effect for GFe (-0.161) was found on chromosome 4A (QGFe.cimmyt-4A_P2), with 21.14% of the PVE. The region QGZn.cimmyt-7B_1P2 co-localized closest to the region QGZn.cimmyt-7B_1P1 in a consensus map built from the linkage maps of both populations. Pleiotropic or tightly linked QTL were also found on chromosome 3B, however of minor effects and PVE between 4.3 and 10.9%. Further efforts are required to utilize the QTL information in marker assisted backcrossing schemes for wheat biofortification. A strategy to follow is to intercross the transgressive individuals from both populations and then utilize them as sources in biofortification breeding pipelines.

5.
Hereditas ; 154: 14, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28559761

RESUMO

Wheat is globally one of the most important crops. With the current human population growth rate, there is an increasing need to raise wheat productivity by means of plant breeding, along with development of more efficient and sustainable agricultural systems. Damage by pathogens and pests, in combination with adverse climate effects, need to be counteracted by incorporating new germplasm that makes wheat more resistant/tolerant to such stress factors. Rye has been used as a source for improved resistance to pathogens and pests in wheat during more than 50 years. With new devastating stem and yellow rust pathotypes invading wheat at large acreage globally, along with new biotypes of pest insects, there is renewed interest in using rye as a source of resistance. Currently the proportion of wheat cultivars with rye chromatin varies between countries, with examples of up to 34%. There is mainly one rye source, Petkus, that has been widely exploited and that has contributed considerably to raise yields and increase disease resistance in wheat. Successively, the multiple disease resistances conferred by this source has been overcome by new pathotypes of leaf rust, yellow rust, stem rust and powdery mildew. However, there are several other rye sources reported to make wheat more resistant to various biotic constraints when their rye chromatin has been transferred to wheat. There is also development of knowledge on how to produce new rye translocation, substitution and addition lines. Here we compile information that may facilitate decision making for wheat breeders aiming to transfer resistance to biotic constraints from rye to elite wheat germplasm.


Assuntos
Resistência à Doença/genética , Secale/genética , Triticum/genética , Cruzamentos Genéticos , Melhoramento Vegetal , Translocação Genética
6.
Crop Sci ; 57: 789-801, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-33343008

RESUMO

We calculated the annual genetic gains for grain yield (GY) of wheat (Triticum aestivum L.) achieved over 8 yr of international Elite Spring Wheat Yield Trials (ESWYT), from 2006-2007 (27th ESWYT) to 2014-2015 (34th ESWYT). In total, 426 locations were classified within three main megaenvironments (MEs): ME1 (optimally irrigated environments), ME4 (drought-stressed environments), and ME5 (heat-stressed environments). By fitting a factor analytical structure for modeling the genotype × environment (G × E) interaction, we measured GY gains relative to the widely grown cultivar Attila (GYA) and to the local checks (GYLC). Genetic gains for GYA and GYLC across locations were 1.67 and 0.53% (90.1 and 28.7 kg ha-1 yr-1), respectively. In ME1, genetic gains were 1.63 and 0.72% (102.7 and 46.65 kg ha-1 yr-1) for GYA and GYLC, respectively. In ME4, genetic gains were 2.7 and 0.41% (88 and 15.45 kg ha-1 yr-1) for GYA and GYLC, respectively. In ME5, genetic gains were 0.31 and 1.0% (11.28 and 36.6 kg ha-1 yr-1) for GYA and GYLC, respectively. The high GYA in ME1 and ME4 can be partially attributed to yellow rust races that affect Attila. When G × E interactions were not modeled, genetic gains were lower. Analyses showed that CIMMYT's location at Ciudad Obregon, Mexico, is highly correlated with locations in other countries in ME1. Lines that were top performers in more than one ME and more than one country were identified. CIMMYT's breeding program continues to deliver improved and widely adapted germplasm for target environments.

7.
Front Plant Sci ; 7: 991, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27458472

RESUMO

Current trends in population growth and consumption patterns continue to increase the demand for wheat, a key cereal for global food security. Further, multiple abiotic challenges due to climate change and evolving pathogen and pests pose a major concern for increasing wheat production globally. Triticeae species comprising of primary, secondary, and tertiary gene pools represent a rich source of genetic diversity in wheat. The conventional breeding strategies of direct hybridization, backcrossing and selection have successfully introgressed a number of desirable traits associated with grain yield, adaptation to abiotic stresses, disease resistance, and bio-fortification of wheat varieties. However, it is time consuming to incorporate genes conferring tolerance/resistance to multiple stresses in a single wheat variety by conventional approaches due to limitations in screening methods and the lower probabilities of combining desirable alleles. Efforts on developing innovative breeding strategies, novel tools and utilizing genetic diversity for new genes/alleles are essential to improve productivity, reduce vulnerability to diseases and pests and enhance nutritional quality. New technologies of high-throughput phenotyping, genome sequencing and genomic selection are promising approaches to maximize progeny screening and selection to accelerate the genetic gains in breeding more productive varieties. Use of cisgenic techniques to transfer beneficial alleles and their combinations within related species also offer great promise especially to achieve durable rust resistance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA